Zaklady programovani v Pythonu

Jan Lastovicka

21. prosince 2020

1 Prvni seminar

1.1 Vyrazy

Spustte piikaz python3 v terminédlu. Pokud Python verze 3 nemate, muZete
jej stahnout ze stranky https://www.python.org/downloads/ a nainstalovat.
Privita vas interpret Pythonu, ktery za znaky >>> ocekava vstup. Zadejte znaky
1 a 2 a stisknéte Return.

>>> 12
12
>>>

Na prvni pohled se zda, Ze interpret pouze vytiskl zadané znaky 12 a ceké
na dalsi vstup. Ve skutec¢nosti probéhlo nékolik fazi, které si nyni projdeme.
Nejdiive interpret precetl zadané znaky a vytvoril z nich hodnotu, ktera re-
prezentuje ¢islo 12. Pro jednoduchost budeme fikat ¢islo jak cifram, které jsme
zadali, tak hodnots, ktera vznikla jejich prectenim. Cisla jsou specidlnim pripa-
dem vyrazi. Dale interpret vyraz vyhodnotil. Vysledkem vyhodnoceni vyrazu je
hodnota. Vyhodnoceni ¢isla probiha trivialné. Vysledkem je to samé ¢islo, které
jsme vyhodnocovali. V naSem piipadé ¢islo 12. Nakonec je vysledna hodnota
vytisténa. Pod nami zadanym vstupem se objevily znaky 12. Tento proces se
opakuje dokud jej nepierusime zaddnim exit() a stiskem Return. Tim inter-
pret ukoné¢ime a vratime se do terminélu. Pokud interpret neukon¢ime, mtazeme
zadat celé nezaporné &islo vypisem jeho cifer v desitkové soustavé. Pro ted nic
jiného neumime.

Shriime si praci interpretu. Nejprve je nacten vstup (faze read), poté je
vstup vyhodnocen (faze eval) a nakonec vysledek vytistén (faze print). Tento
proces se opakuje (faze loop). Spojime-li poc¢ateéni pismena anglickych jmen
fazi dostaneme zkratku REPL, ktera tento proces oznacuje.

Pokusme se zadat pted ¢islo cifru nula.

>>> 01
File "<stdin>", line 1
01

A

https://www.python.org/downloads/

SyntaxError: leading zeros in decimal integer literals are not permitted;
use an 0o prefix for octal integers
>>>

Obdrzeli jsme syntaktickou chybu (SyntaxError). Syntaktické chyby vzni-
kaji ve fazi ¢teni vstupu a upozornuji nas na to, Ze porusujeme gramatiku jazyka.
V tomto pfipadé gramatika Pythonu zakazuje zacit ¢islo cifrou nula.

Predstavime si dalsi typ vyrazu. Mame-li dva vyrazy v1 a vo mizeme vytvorit
vyraz

V1+U2

nazyvany soucet.
Protoze ¢isla 1 a 2 jsou vyrazy, muzeme vytvorit vyraz 1+2. Co se stane,
kdyZ nechame tento vyraz vyhodnotit?

>>> 1+2
3

Jak jste asi predpokladali, obdrzeli jsme soudet ¢isel 1 a 2. Pojdme se ale po-
drobnéji podivat, jak k tomu doslo. Ve fazi ¢teni vstupu se vytvofil vyraz souc¢tu
v1+v2, kde podvyrazy v a v jsou postupné ¢isla 1 a 2. Vyhodnoceni vyrazu
sou¢tu probiha tak, Ze se nejprve vyhodnoti podvyrazy v, a ve. Tim obdrzime
dvé hodnoty, které nasledné se¢teme. Protoze vy a ve jsou v naSem pfipadé ¢isla
1 a 2, jejich vyhodnocenim, jak jiz vime, obdrzime opét ¢éisla 1 a 2. Soucet je
roven ¢islu 3. Tim konéi faze vyhodnoceni. Zbyva vysledek vytisknout.
Pokud u sou¢tu vynechdme vyraz vs vznikne syntakticka chyba:

>>> 1+
File "<stdin>", line 1

1+

A

SyntaxError: invalid syntax

Poznamenejme, ze vynechani podvyrazu vy k chybné nevede. Tedy vstup +1
je v jazyce platny, ale nejedné se o soucet.

Uvédomme si, ze soulet je také vyraz a miize tedy vystupovat u dalsiho
sou¢tu v roli podvyrazu v; nebo vy. Gramatika tedy umoziuje vytvorit vstup
1+2+3. Ten dokonce mohl vzniknout dvojim zptusobem. Zaprvé jsme nejprve
mohli vytvorili soucet 1+2 a poté jej v roli v1 pouzili v souc¢tu 1+2+3, kde jako
vg vystupuje €islo 3. Zadruhé jsme mohli za¢it sou¢tem 2+3 a poté vytvorit
soucet 1+2+3, kde v; by bylo ¢islo 1 a vy souet 2+3.

At uZ vstup 142+3 vznikl prvnim nebo druhym zptsobem, interpret po za-
déani vytiskne 6.

>>> 14243
6

Plati, Ze interpret u sou¢tu upfednostnil prvni zptisob vytvofeni vstupu. Nejprve
tedy secetl ¢isla 1 a 2, tim obdrzel ¢islo 3, a poté k vysledku pricetl &islo 3.

Libovolny vyraz muazeme uzaviit do kulatych zavorek. Presnéji, pokud je v
vyraz, pak

)

je také vyraz. Vyraz (v) se vyhodnoti prosté tak, ze se vyhodnot{ jediny podvy-
raz v a jeho vysledek je i vysledkem vyhodnoceni vyrazu (v). Vyznam zévorek
je, ze umoznuji ménit poradi vyhodnoceni vyrazu.

Vyraz 1+2+3 interpret vyhodnoti stejné jako vyraz (1+2)+3.

>>> (1+2)+3
6

Pomoci zavorek miuzeme zménit pofadi vyhodnoceni soucti.

>>> 1+(243)
6

Vysledek je sice stejny jako v prvnim pfipadé, ale interpret nejdiive secetl Cisla
2 a 3 a az poté secetl 1 a 5.
P1i zapomenuti oteviraci zavorky ¢teni vstupu skonéi chybou.

>>> 1+2+3)
File "<stdin>", line 1
1+2+3)

A

SyntaxError: unmatched ')'

Pii zapomenut{ uzaviraci zavorky interpret ocekava jeji doplnéni na dalSim

radku.

>>> 1+(2+3
|
6

Uzaviit do zavorek lze libovolny vyraz. Zavorky muzeme pridat i tam, kde
nepfinesou zadny novy vyznam.

>>> (1)
1

>>> ((1))
1

Soucet je priklad operatoru. Jedna se o operdtor binarni, protoze ma dva
podvyrazy. K operatoru souctu je prifazena operace s¢itajici ¢isla. Operace je
také binarni: vyzaduje dva argumenty nazyvané operandy. Rozdil mezi operé-
torem a operaci spoCiva v tom, Ze operator urcuje jak z existujicich vyrazi

slozit novy vyraz. Oproti tomu operace definuje jakym zpusobem se pii vy-
hodnoceni operatoru spoc¢ita ze vstupnich hodnot vysledna hodnota. Napiiklad
pomoci operatoru + muzeme ze dvou vyrazi 1 a (2+3) slozit vyraz 1+(2+3).
P1i jeho vyhodnoceni se vykoné operace séitani, kde v roli operandu vystupuji
dvé hodnoty reprezentujici ¢isla 1 a 5.

Dalgi binarn{ operatory, jejichz operace pracuji s celymi &isly, jsou - (rozdil),*
(nasobek), // (celoc¢iselné déleni) a % (zbytek po celo¢iselném délent).

VyzkouSejme si nové operatory.

>>> 5-2
3

>>> 5%2
10

>>> 5//2
2

>>> 5%2
1

Vsimnéme si, Ze pomoci operatoru - mizeme vytvorit zdporné éislo.

>>> 0-1
-1

U operatoria // a % dochézi k chybé déleni nulou v pifipadé, ze se druhy
podvyraz vyhodnoti na nulu.

>>> 4%0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>> 4//0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Tato chyba je jiného druhu, nez diive uvedené syntaktické chyby. Nenastava pii
¢teni vstupu, ale az ve fazi vyhodnoceni vyrazu.

Nové predstavené operatory se stejné jako operator s¢itani vyhodnocuji zleva
doprava. Proto se naptiklad vyraz 2-2-2 vyhodnoti jako (2-2)-2.

Operatory + a - maji mensi prioritu nez operatory *, // a %. To znamena,
Ze se pii ¢teni vstupu snazi interpret povazovat operatory z druhé skupiny jako
podvyrazy operatort z prvni skupiny. Napiiklad vyraz 1+2*3 je chapan jako
1+(2*3). Uvnitf skupin plati aplikovani operatori zleva doprava. Tedy 10//2%3
je to samé jako (10//2)%3

Predstavime si jeden operator, ktery ma pouze jeden podvyraz a proto jej
nazyvame unarni. Pokud v je vyraz, pak

-V

je také vyraz. Aby nedochézelo k zameéné s binarnim operatorem -, oznacujeme
jej -x. Operator pfi vyhodnoceni pocita operaci opa¢ného ¢isla.

>>> -5
-5

Zde vstup -5 je unarnim operatorem -x s podvyrazem 5, ktery se vyhodnoti
tak, ze se spocita opacné ¢islo k ¢islu 5. Vysledné zaporné ¢islo —5 je nasledné
vytisténo znaky -5. Tato skutecnost je zfejméji vyjadiena nasledovné.

>>> -(5)
-5

Operator -x mé vétsi prioritu neZz vSechny dosud predstavené operatory.
Proto napiiklad vyraz -1-1 je chapéan jako (-1)-1.

Kolem znakti uvnitf bindrnich operatorti nékdy piSeme mezery, aby jsme
vyraz zpiehlednili. Tyto mezery nemaji na vyznam vyrazu zadny vliv. Pro pfe-
hlednost mizeme tedy vyraz -1-1 zapsat jako -1 - 1.

1.2 Proménné

Vyrazy slouzi k vyjadreni vypoctu hodnoty. Pfipomenime si napiiklad, Ze za-
porné ¢islo neumime zadat piimo, ale musime jej vypocitat jako opacéné ¢islo ke
kladnému ¢islu. Kromé vyrazu mizeme interpretu zadat pfikaz pfifazeni hod-
noty do proménné. Pokud ¢ je jméno proménné a v vyraz, pak

1=V
je prikaz prifazeni. Piikaz se vyhodnoti tak, Ze se nejprve vyhodnoti vyraz v a
poté vznikne vazba proménné i na vysledek vyhodnoceni.

>>> x=1

Interpret nic nevytiskl. Pouze vytvoril vazbu proménné x na hodnotu 1.
Mluvime také o tom, Ze proménné x mé hodnotu 1. Seznam vazeb si muzeme
predstavit jako tabulku, kde v prvnim sloupci jsou jména proménnych a v dru-
hém k nim navazané hodnoty. Tabulka vazeb nyni vypada nasledovné.

Kazdé jméno proménné je vyrazem. V piipadé, Ze proménnd ma vazbu na
hodnotu, je vysledkem vyhodnoceni navazané hodnota.

>>> X
1

Pokud proménné nema vazbu, skonéi vyhodnoceni chybou.

>>> y
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'y' is not defined

Protoze proménnéa je vyrazem, muzeme ji pouzit jako podvyraz jiného vy-
razu.

>>> X+X
2

Oproti tomu pfifazeni neni vyrazem a neni tedy moZné jej pouzit jako pod-
vyraz.

>>> 1+(a=2)
File "<stdin>", line 1
1+(a=2)

A

SyntaxError: invalid syntax

Prifazeni hodnoty k proménné, kterd jiz mé vazbu, zpiisobi, Ze vazba se
zméni na zadanou hodnotu.

>>> X=2

Tabulka vazeb bude po provedeni predchoziho piikazu vypadat nasledovné.

Chcete-li zrusit vSechny vazby proménnych, ukoncete interpreter vstupem
exit() a znovu jej spustte.

7 duvodu lepsi Citelnosti budeme vzdy psat kolem znaku pfifazeni mezery.
>>> X = 2

Na pravé strané od znaku pfifazeni muze byt libovolny vyraz. Dokazete Tici,
co zpusobi nasledujici piikaz? (Predpokladame, Ze proménna x ma vazbu na
¢islo 2.)

>>> X = X

Nejprve se vyhodnoti vyraz na pravé strané od rovnitka. Protoze se jedna o
proménnou, kterd mé vazbu, bude vysledkem navazané ¢islo 2. Poté se zméni
vazba proménné x na ¢islo 2. Vysledek nebude tedy mit zadny efekt.

A co tento pfikaz?

>>> X =X + 1

Podobné jako v predchozim piipadé se nejprve vyhodnoti vyraz na pravé strané.
Zde ale je vyraz x + 1 jehoz hodnota je 3. Poté dojde ke zméné vazby proménné
x na hodnotu 3. Efekt bude takovy, Ze hodnota proménné se zvysi o jedna.

Jméno proménné miize obsahovat pismena, ¢islice a podtrzitka. Jména zpra-
vidla piSeme malymi pismeny v anglickém jazyce a jednotliva slova oddélujeme
podtrzitkem.

>>> age = 15
>>> personl_height = 179

Proménna nesmi zacinat ¢islici. To by vedlo k chybé v syntaxi.

>>> lage
File "<stdin>", line 1
lage

A

SyntaxError: invalid syntax

1.3 Program

V nasledujicich ¢astech budete potfebovat program Visual Studio Code s rozsite-
nim pro Python (https://code.visualstudio.com). Vytvoite si novy adresar
kam budete ukladat programy. Spustte Visual Studio Code a dejte oteviit nové
vytvoreny adresat volbou Open folder... Vytvoite novy soubor s obsahem

print (1)

a ulozte jej pod nazvem prl.py. V poloZce Run listy aktivit (sloupec vlevo) si
nechte vytvorit launch. json soubor a vyberte si prvni moznost (Python File).

eoe pripy —programy

Python 38564-bt_ 0,0 Ln1,Cols Spacesi2 UTF-8 LF Python & O

Soubor launch.json muzete zaviit. Spustte klikem na zeleny trojtihelnik
program (b). V otevieném terminalu je vidét vystup programu:

1

https://code.visualstudio.com

Okno studia by mélo nyni vypadat nasledovné.

[] pri.py — programy
@ EXPLORER @ pripy X > O -
> OPEN EDITORS 2 pripy
~ PROGRAMY print(1)
> vscode

@ pripy

PROBLEMS ~ TERMINAL -+ 2: Python v 4+ 0@ ~ x

janlastovicka@lan-iMac programy % /usr/local/bin/python3 "/Users/janlastovicka/
Library/Mobile Documents/comvapple~CloudDocs/Vyuka/ZPP1/programy/pri. py"
1

janlastovicka@lan-iMac programy %

> OUTLINE
> NPMSCRIPTS

©

Python 385 64-bit ® 0 A0 B Select Postgres Server Ln1,Col9 Spaces:2 UTF-8 LF Python & 0Q

Obsahem souboru je maly program sestavajici z jediného rfadku: print (1)
Jedna se o piikaz tisku. Pfesnéji pokud v je vyraz, pak

print(v)

je piikaz tisku. Pfikaz se vykona (vyhodnoti) tak, Ze se nejdfive vyhodnoti vyraz
v a poté se vysledek vytiskne.

Spusténi programu vykona piikaz tisku a tim vytiskne ¢islo 1. Mozna vas
napadlo, Ze stejny vyznam by mélo do programu napsat jen vyraz 1. Spusténi
takového programu by nemélo Zadny efekt. Nedojde k tisku Zadného vystupu a
program by mél stejny vyznam, jako by byl prazdny. Nejprve uvedme, Ze kazdy
vyraz je i piikazem. Tedy nas program obsahujici pouze 1 je z pohledu zapisu
spravny. Tisk vysledku vyhodnoceni vyrazu se ale provadi pouze v interaktivnim
(REPL) rezimu interpretu. Proto v spusténych programech potiebujeme k tisku
hodnoty pouzit piikaz print.

Podivejme se na mirné slozitéjsi program.

a=1
print(a)

Program zapsany v souboru se skladéa ze dvou piikazi. Spusténi programu
postupné vykona oba piikazy. Nejprve se vykoné pifkaz pfifazeni a = 1. Tim
vznikne vazba proménné a na ¢&islo 0. Poté se vykona piikaz tisku print(a).
Vyraz a se vyhodnoti na ¢&islo 1, které se prikazem vytiskne. Efekt bude tedy
opét tisk ¢isla 1.

Program se obecné sklada z pifkazii a béh kazdého programu probiha tak,
Ze se postupné vykonévaji jeho pfikazy.

Dalsi rozdil mezi interaktivnim médem a spusténim programu zapsaného v
souboru spoc¢iva v tom, ze v druhém pripadé se provede kontrola gramatiky

celého programu pied jeho spusténim. V nasledujicim piikladu se tedy prvni
piikaz vibec neprovede, protoze druhy fadek obsahuje syntaktickou chybu.

print(1)
1+

Pokus o spusténi skon¢i chybou

File ".../prl.py", line 2
1+

A

SyntaxError: invalid syntax
Porovnejme vypis po spusténi nésledujiciho programu.

print(1)
1/0
print(2)

V terminalu se objevi:

1
Traceback (most recent call last):
File ".../prl.py", line 2, in <module>
1/0
ZeroDivisionError: division by zero

Vidime, Ze doslo k vykonani prvniho piikazu a vytisténi ¢éislice 1. Teprve az
vykonani druhého piikazu skonéilo chybou. B&h programu se tim zastavil a k
vykonani tfetiho piikazu vibec nedoslo.

Klikneme-li nalevo od ¢&isla fadku vlozime na fadek zarazku anglicky break-
point (e). Vlozme zarazku na prvni fadek (e 1 print(1)) a spustme program
pro ladéni volbou Start Debugging (> Python:Curentfile v) v poloZzce Run (H) na-
bidky aktivit. Studio by nyni mélo vypadat jako na niZze uvedeném obrazku.

[XN J pri.py — programy
RUN D> Python: Current File v 5% & - = > 2 ¥ T O 0 > M -
~ VARIABLES @ pripy
/O v Locals © 1 print(1) |
> special variables 2 4o
3 print(2)
> Globals
 WATCH
PROBLEMS ~ TERMINAL - 3:PythonDebugConsole ~ + [0 M ~ X
janlastovicka@lan-iMac programy % cd “/Users/janlastovicka/Library/Mobile Docu
ments/com~apple~CloudDocs/Vyuka/ZPP1/programy" ; env /usr/local/bin/python3 /Us
ers/janlastovicka/ .vscode/extensions/ms-python. python-2020.8.109390/pythonFiles
/1ib/python/debugpy/launcher 62155 — "/Users/janlastovicka/Library/Mobile Docu
 CALL STACK PAUSED ONBREAKPOINT ments/ comapple~ClLoudDocs/Vyuka/ZPP1/programy/pri. py"
<module> pripy @
®
& * BREAKPOINTS
~) Raised Exceptions
{% Uncaught Exceptions

| Python38564-bit ® 0O g> Python: Current File (programy) & Select Postgres Server Ln1,Col1 Spaces:2 UTF-8 LF Python & 0

Vidime, Ze vykonavani programu se zastavilo na zarazce jesté pred vyko-
nénim prvniho pfikazu. Nyni mame dvé moznosti. Muzeme nechat program
vykonavat dalsi piikazy od zarazky volbou Continue (I>), nebo vykonat na-
sledujici pfikaz a znovu se zastavit volbou Step Over (7). VyuZijeme druhé
moznosti, které budeme fikat krok, a vykoname piikaz print(1). Na vystup se
vytisklo ¢islo 1. Vykonévani programu je nyni zastavené na piikazu 1/0. Dalsi
krok v programu zptsobi chybu déleni nulou a studio v programu oznacilo misto,
kde k chybé doslo. Pokus o dalsi krok chybu vytiskne a program ukonéi. Pro-
ces, kterym jsme nyni prosli, nazyvame krokovanim programu. Klikem zarazku
odstranime.

Pii zastaveni programu studio v sekci Variables (vlevo nahofe) zobrazuje
aktualni vazby proménnych. Vezméme si program

x =1

y=x+1
XxX=y *3
print(x)

a pfidejme zarazku na posledni piikaz a spustme program pro ladéni. Pro-
gram se pred tiskem zastavil a ve studiu vidime, Ze proménna x mé vazbu na
¢islo 6 a proménna y na 2. Nechame program dobéhnout a pfesuneme zarazku na
prvni fadek. Krokovanim programu muzeme sledovat jak se vazby proménnych
vytvareji a méni.

V kostfe programu

x =1
y=2
?

print(x)

10

print(y)

chceme na misto ? doplnit kod tak, aby se prohodily vazby proménnych x
a y. Program by tedy mél vytisknout nejdiive 2 a poté 1. Myslite si, Ze bude
nasledujici feseni fungovat?
X 1
y =2
X =Yy
y =X
print(x)
print(y)

Projdeme si béh programu. Prvn{ dva piikazy vytvoii vazby x na 1 a y na 2. Po
vykonani tfetiho piikazu se vazba x zméni na 2. VSiméme si, ze nyni jsme pfisli o
informaci jaka hodnota byla pivodné navizéana na x. étvrty prikaz zméni{ vazbu
y na aktualni hodnotu proménné x, kterou je hodnota 2. P4ty i Sesty piikaz tedy
vytiskne éislici 2.

Regeni spravime tim, Ze si pfed provedenim tfetiho pfikazu ulozime hodnotu
proménné x do pomocné proménné z.

<M ON < M
< XN

=z
print (x)
print(y)

Krok za krokem si projdéte program ve studiu.

Programétor by mél program psat predevsim tak, aby byl srozumitelny pro
programétora, ktery program bude &st. Tim muZe byt bud jiné programétor,
nebo jeho tvirce, ktery po néjaké dobé zapomene, jak program fungoval. Z
tohoto divodu je dobré do programu dodavat prazdné radky, které logicky od-
déluji ¢asti kodu a hlavné komentaie. Pokud na néjakém Fadku je znak #, tak
v8e, co je za timto znakem az do konce Fadku, se pocita za komentar a do pro-
gramu nepatii. Pfedchozi program muzeme tedy zpiehlednit tak, jak je ukazano
na Obrazku [1

Dokazete v nésledujici kostie programu chybéjici misto doplnit tak, aby se
hodnota proménné y dostala do proménné x, hodnota proménné z do proménné
y a kone¢né hodnota proménné x do proménné z? Program by tedy mél postupné
vytisknout ¢isla 2, 3 a 1.

=1

NN < M

11

Prohozeni vazeb proménnych.

vstupni hodnoty
x=1
y =2

z = X # proménnd z je pomocna
y
y=z2z

>
1l

tisk vystupnich hodnot
print(x)
print(y)

Obrézek 1: Program s komentafi.

print(x)
print(y)
print(z)

Cast programu, kde se zadavaji hodnoty proménnych, budeme nazyvat vstu-
pem, a Cast, které tiskne vysledek programu, vystupem. Predchozi tkol by tedy
Sel formulovat takto: Pro tfi zadané hodnoty xz1, x5 a x3 na vstupu vratte na
vystupu hodnoty x2, x3 a 1.

Ukol 1.1. Jsou dany délky stran obdélniku. Vratte jeho obvod a obsah.
Ukol 1.2. Pro zadanou dalku hrany spoctéte obsah krychle.

Ukol 1.3. Kolik vtefin trva ¢asovy tsek zadany poctem vtefin, minut, hodin a
dna?

Ukol 1.4. Rychlost svétla ve vakuu je piiblizné 299 792 458 m/s. Jedna astro-
nomicka jednotka (AU) ma 149 597 870 700 m. Pfiblizné za kolik vtefin urazi
svétlo ve vakuu zadany pocet astronomickych jednotek? Vzdalenost Slunce a
Zemé je priblizné 1 AU, vzdalenost Slunce a Pluta je ptiblizné 40 AU.

Ukol 1.5. Pro zadana pfirozena &isla n; a ny vratte nulu v p¥ipadé, Ze jsou
obé sudéa. Lze problém vyftesit tak, Ze prosté vzdy vratime nulu? Co kdyz zadani
zménime tak, Ze program musi vratit nenulové ¢islo v opa¢ném pripadeé.

Ukol 1.6. Vratte ¢islo jedna, pokud je zadané ¢islo sudé, jinak vratte nulu.

Ukol 1.7. Vratte nulu pravé tehdy, kdyZ je zadané &islo délitelné tFemi, péti
a sedmi. Lze program zjednodusit tak, aby se pocital zbytek po déleni pouze
jednou?

Ukol 1.8. Mame dana dvé trojciferna ¢isla n; a ng. Ukolem je vratit &islo,
jehoz cifry budou nejdfive cifry ¢isla ny a poté cifry ¢isla no.

12

Ukol 1.9. Vratte viechny cifry zadaného trojciferného &isla.
Ukol 1.10. Prohodte prvni a t¥eti cifru trojciferného éisla.

Ukol 1.11. Vratte nulu pravé tehdy, kdy# je ¢tyfciferné ¢islo palindrom. Cislo
je palindrom pokud se ¢te stejné zleva doprava i zprava doleva. Napiiklad ¢islo
1221 je palindrom, ale ¢islo 1222 palindrom neni.

Ukol 1.12. Jsou dany cifry étyiciferného &isla v dvojkové soustavé. Preved'te
¢islo do desitkové soustavy.

Ukol 1.13. Pro ¢islo mensi nez 32 vratte viechny jeho cifry v dvojkové soustave.

Ukol 1.14. Upravte posledni cifru zadaného &isla tak, aby bylo vysledné &islo
délitelné tfemi.

Ukol 1.15. Bod v roviné je uréen celo&iselnymi soufadnicemi x a y. Soufadnice
jsou v rozmezi (0, 100). Jaké soufadnice bude mit bod, kdyZ jej posuneme v x-ové
ose 0 10 a v y-ové ose o 20 jednotek a poté dvakrat vzdalime od pocatku?

Ukol 1.16. Pomoci az ¢tyfciferného &sla ¢ cacgeq reprezentujeme dvé az dvou-
ciferna ¢isla cico a czcq. Napiiklad ¢islo 1234 reprezentuje ¢isla 12 a 34. V
pripadé, Ze by cifry ¢; a co chybély, bere se prvni ¢islo rovné nule. Tedy 12
reprezentuje Cisla 0 a 12. Nyni mame na vstupu dvé takové az Ctyiciferné repre-
zentace dvojce &isel. Ukolem je vratit reprezentaci dvojce souétu sobé odpovi-
dajicich ¢isel. Napfiklad pro 1234 a 2431 vratime 3665, protoze 12 + 24 = 36 a
34 4+ 31 = 65. V piipadé, ze by soucet néjaké slozky vysel tficiferny, prvni cifru
zahodime. Tedy napiiklad pro 8912 a 9000 vratime 7912, protoze 89+ 90 = 179,
1240 =12 a u ¢&isla 179 zahodime cifru 1 a dostaneme 79.

Ukol 1.17. Pomoci a7 Gtyiciferného &isla ¢qcacgeq reprezentujeme desetinné
¢islo cyca, c3cy. Napiiklad ¢islo 1234 reprezentuje desetinné &islo 12,34. Cifry
prifazujeme odzadu. Tedy ¢islo 12 reprezentuje desetinné ¢&islo 0,12. Mé&jme
zadany dvé reprezentace desetinnych ¢isel. Cilem je vratit reprezentaci jejich
souctu. Tedy pro 1212 a 2111 vratime 3323 protoze 12,12 + 21,11 = 33, 23.
V pripadé, Ze by vznikla pii souc¢tu péticiferné reprezentace, prvni cifru zaho-
dime. Tedy pro 9999 a 1 vratime 0, protoze 99,99 + 0,01 = 100. Reprezentace
souctu je 10000 a zahozenim prvni cifry obdrzime nulu.

Ukol 1.18. Pro zadané prirozené ¢islo vratte soudet vSech prirozenych ¢&isel,
ktera jsou mensi nebo rovno nez toto &islo.

2 Druhy seminar

2.1 Operator umocnovani

Na zacatek si pfedstavime z pohledu vyhodnocovani netradi¢ni bindrnf operator
mocniny **. Levy podvyraz urCuje mocnénce a pravy mocnitele. Proto tedy
plati:

13

>>> 5 ** 2
25

Neboli 52 = 25. Aby byl vysledek celoéiselny, omezime se na situace, kde
mocnitel je nezaporné ¢islo. Zaludné je, Ze mocnina ma vyssi prioritu nez unarni
-x. Proto prekvapivé plati:

>>> -1 *% 2
-1

To z toho dtvodu, ze vyraz -1**2 se vyhodnoti stejné jako - (1**2). Nyni
jiz vysledek neni prekvapenim. Dalsi vyjimka spo¢iva v tom, Ze mocnina se na
rozdil od vSech ostatnich operatori vyhodnocuje zprava do leva. Proto

>>> 2 ek 2 ek 3
256

pocita, ze 2(2°) = 28 = 256, tedy stejné jako 2 ** (2 ** 3). To odpovida
konvenci mocnéni v matematice, kde plati, ze b** = b(P"). Vyhodnoceni zleva
doprava musime vynutit uzdvorkovanim:

>>> (2 *% 2) ** 3
64

Spocitali jsme, Ze (22)3 = 43 = 64.

Zopakujeme si prioritu operatori. Nejmensi prioritu mé soucet + a rozdil -
dale jsou nasobek *, déleni // a zbytek po déleni * poté nasleduje opacné &islo
-X a nejvetsi prioritu mé mocnina **.

2.2 Pravdivostni hodnoty

Jediny typ hodnot, se kterym jsme dosud pracovali, byla cela ¢isla. Celych ¢isel
je potencionalné nekoneé¢né mnoho. Mohli jsme vytvorit libovolné velké celé
¢islo. Nyni si uvedeme novy typ hodnot, ktery bude naopak velmi maly, pouze
dvé hodnoty budou tohoto typu. Zavedeme typ pravdivostni hodnota, ktery bude
obsahovat pouze hodnotu pravda a hodnotu nepravda.

Hodnotu pravda ziskdme prectenim vyrazu True a hodnotu nepravda pie-
¢tenfm vyrazu False. Pravdivostni hodnoty se tisknou zpét na tyto vyrazy.
Pravdivostni hodnoty se stejné jako ¢isla vyhodnocuji sami na sebe. Obecné lze
tici, ze kazda hodnota se vyhodnoti sama na sebe. Proto plati nasledujici.

>>> True
True
>>> False
False

14

Cisla a pravdivostni hodnoty patii mezi literaly. Literal je zapis hodnoty
pfimo v programu. Proménné naopak mezi literdly nepatii. Jejich hodnota je
ur¢ena aZ za béhu programu.

Uvedeme tfi operatory nezyvané pravdivostni operdtory, které pracuji s prav-
divostnimi hodnotami: or, and a not. Operatory or a and jsou binarni a operator
not je unarni. Operace pfifazené operatorim jsou dany nasledujicimi tabulkami.

or True False
True True True
False | True False

and True False
True True False
False | False False

not
True False
False | True

Proto plati:

>>> True or False

True

>>> True and False
False

>>> not True

False

Pravdivostni operace miizou mit jako své operandy libovolné hodnoty. Na-
piiklad vyraz 1 and 2 m& hodnotu 2. My se na seminafi omezime pouze na
operandy, které jsou pravdivostni hodnoty.

Kazdy z pravdivostnich operatori mé jinou prioritu. Nejmensi prioritu mé
operator or, dale je and a nakonec je operator not s nejvyssi prioritou. Prio-
rity pravdivostnich operatori jsou ilustrovany nasledujicim pfikladem, kde oba
vyrazy maji stejny vyznam.

>>> not False and not True or True

True

>>> ((not False) and (not True)) or True
True

K zjednoduSeni vyrazi muzeme pouzit znalost zakoni logiky. MiZeme na-
priklad pouzit zdkon dvoji negace a dostaneme nésledujici tvrzeni. Pro libovolny
vyraz v plati, Ze vyraz not not v mé stejnou hodnotu jako vyraz v. Budeme také
fikat, Zze tyto vyrazy jsou ekvivalentni. BéZné také budeme pouzivat takzvané
De Morganovy zakony. Pro vyrazy vi a vy plati, Ze vyraz

not v; and not vy

15

je ekvivalentni vyrazu
not (v1 or vy)

a vyraz
not v; or not vy

je ekvivalentni vyrazu
not (v; and vy).

Pro implikaci neméme zadny operator a musi byt vyjadiena podle zakonu o
néhradé implikace disjunkci. Tedy chceme-li pro vyrazy vi a vy vyjadfit, ze vq
implikuje v, vytvorime vyraz

not v; or vs.
Ukol 2.1. Za pouziti zakoni logiky zjednoduste vyrazy
1. not (not x or not y),
2. x and x and x,
3. x and y or x and z.

Ukéazeme si dalsi operatory nazyvané porovnévaci operatory, které se vyhod-
nocuji na pravdivostni hodnoty. Patfi mezi né binarni operatory <, <=, >, >=,
= (nerovnost) a == (rovnost). Operatory <, <=, >, >= pro &iselné argumenty
porovnavaji hodnoty ¢isel. Napiiklad

>>> 1< 0
False
>>> 2 < 2
False
>>> 2 <= 2
True
>>> 3 > 2
True
>>> 4 >= 5
False

Operatory rovnosti a nerovnosti lze pouzit na libovolné hodnoty. Tedy jak
na ¢isla tak na pravdivostni hodnoty.

>>> 100 == 100
True

>>> True != False
True

16

Vsimnéme si, Ze rovnost zapisujeme dvéma znaky rovnitka (==), protoZe
jeden znak rovnitka mame vyhrazeny pro piikaz pfifazeni. Zapomenuti druhého
rovnitka vede k ¢asté chybé:

>>> 10 = 10
File "<stdin>", line 1
SyntaxError: cannot assign to literal

Zde se ve skuteCnosti snazime pfifadit hodnotu 10 literalu 10, coZ neni
mozné.

Operatory porovnani maji mensi prioritu neZ aritmetické operatory (+, *,
...) a v&tsi prioritu nez pravdivostni operatory (or, and a not). Proto plati, Ze
nésledujici dva vyrazy se vyhodnoti pfesné stejné.

>> 10 + 5==15and -1 ==0 - 1

True

>>> ((10 + 5) == 15) and ((-1) == (0 - 1))
True

Operatory porovnéni maji obvyklé vlastnosti, které zname z matematiky.
Napriiklad pro vyrazy v, a vo plati, Zze vyraz

U1 1= V2
je ekvivalentni vyrazu

not wvi== vg

V1 < Vg
je ekvivalentni vyrazu
Vg > V1.

Zaméime se nyni na vyhodnoceni pravdivostnich operatort and a or. Plati,
ze jejich podvyrazy se vyhodnocuji jen, pokud je to nutné. Vyraz

True or 5 + a == 10

bude vzdy pravdivy bez ohledu na vazbu proménné a. Vyhodnocovani vy-
razu se tedy nebude obtéZzovat vyhodnocenim podvyrazu 5 + a == 10 a vrati
pravdu. Podobné vyraz

1!=1and a<5
bude vzdy nepravdivy.

Rikédme, Ze vyhodnoceni operatori or a and je liné. Podivejme se jesté na
jeden priklad

17

a==0o0r 20%a==0

Pokud by se operator or nevyhodnocoval 1iné, skon¢ilo by vyhodnoceni pro
a rovno 0 chybou pfi pokusu délit nulou. Liné vyhodnocovani v8ak nejdiive
vyhodnoti podvyraz a == 0 a pokud je pravdivy, vrati rovnou pravdu. Vyraz
tedy vraci pravdu, pokud je a rovno nule nebo neni rovno nule a déli ¢islo dvacet.

Poznamenejme, Ze pii uplathovani pravidel logiky musime byt obeziretni
v pripadech, kdy vyhodnoceni vyrazu muze skoncit chybou. Pfedchozi vyraz
tedy nenf ekvivalentni vyrazu

20 % a == 0 or a ==

a to presto, Zze u logické spojky nebo nezalezi na poradi spojovanych vyroku.
Druhy vyraz skon¢i chybou pro a rovno 0.

Ukol nas miize vyzvat, ze mame rozhodnout, zda plati néjaké tvrzeni. Vez-
méme si napiiklad nasledujici ikol.

Jsou déna dvé cela ¢isla a a b. Rozhodnéte, jestli je a mensi nez b.
V takovém piipadé je nas cil napsat program, ktery ma na vstupu dvé &isla

a a b. Program vrati True, jestlize tvrzeni plati (a < b). V opacném piipadé
musi vratit False. ReSeni by mohlo vypadat takto:

vstup
a=1
b =2

porovnani
result = a<b

vystup
print(result)

Ukol 2.2. Pro zadana pfirozena &isla a, b a ¢ rozhodnéte, zda plati a®+b% = ¢2.

2.3 Vétveni programu

Dostavame se k pfedstaveni piikazu, ktery nam umoziuje vykonat urcité prikazy
jen, pokud je splnéna zadana podminka. Pfesnéji pokud mame vyraz v a piikazy
P1,P2,---3,Pn pak
ifv:
p1
b2

Pn

18

je prikaz vétveni. Piikazy p1,. .., pn jsou odsazené tabulatorem. Prvni fadek
ifv:

se nazyva hlavicka a prikazy pi, . .., p, se nazyvaji télo prikazu vétveni. Pred-
poklddame, ze vyraz v mé pravdivostni hodnotu. Pfikaz vétveni se vykona tak,
ze se nejdiive vyhodnoti vyraz v. Pokud je jeho hodnota pravda, vykonaji se
postupné vyrazy pi,...,p, v opacném pripadé vykonavani skonci.

Ukazeme si piiklad pouziti.

a=>5
if a < 10:
print(a)

Byl pouzit piikaz vétveni, kde vyraz v je a < 10, n = 1 a piikaz p; je
print(a). Spusténi programu nejprve vytvori vazbu proménné a na hodnotu
5 (prvni fadek), dale vyhodnoti a < 10 na hodnotu True. ProtoZe hodnota je
pravda, vykoné se télo prikazu vétveni. Pfesnéji se vykona piikaz print(a)
a hodnota a se vytiskne. Pokud v prvnim faddku zménime pravou stranu od
rovnitka na 10, vyraz v hlavi¢ce vétveni se vyhodnoti na False a vykonéni téla
se neprovede. Program skon¢i bez tisku jakékoliv hodnoty.

Piikaz vétveni mizeme pouzit na vypocet absolutni hodnoty zadaného ¢isla.

X = -5
if x < 0:
X = -X
print(x)

Vsimnéte si, ze konec piikazu vétveni je dan odsazenim jeho téla. Nasledujici
¢ast programu je tedy piikaz vétveni.

if x < 0:
X = -X

Ptikaz ménici znaménko hodnoty proménné x se provede jen, pokud je ¢islo
zadporné. Projdéte si krok po kroku program. Krokem projdéte program pro
hodnoty 0 a 10.

Pokud odstranime dvojtecku v piikazu vétveni, dojde k chybé:

ifx<O0
A

SyntaxError: invalid syntax

Telo vétveni se muze skladat z vice piikazt. Nasledujici program prohodi
hodnoty a a b, pokud je b mensi nez a.

19

print(a)
print(b)

Vyzkousejte si program pro a rovno 2 a b rovno 4.
Samoziejmé muzeme pouzit vic prikazi vétveni za sebou.

a =10

if a < 100:
print(1)

if a >= 0:
print(2)

Co program déla? Zkuste jej spustit pro hodnoty 120 a —1.
Protoze prikaz vétveni je opét prikazem, muzeme jej pouzit v roli pfikazu p;
pro néjaké i v téle jiného piikazu vétveni.

a=4
if a % 2 == 0:
if a == 4:
print(1)
print(2)

Co program vytiskne? Co vytiskne pro hodnoty 2 a 17
Zde ptikaz vétveni

if a ==
print(1)

je pouzit v téle prikazu vétveni:

if a % 2 == 0:
if a ==
print(1)
print(2)

Dalsi chybou by bylo, kdyz by nebyly v8echny piikazy v téle prikazu vétveni
stejné odsazeny. Pokus o spusténi programu

a=20
if a == 0:
print(1)
print(2)

20

skon¢i chybou

line 4
print(2)

A

IndentationError: unexpected indent

Ukol 2.3. Realizujte znaménkovou funkei, téz znamou jako funkce signum.
Funkce pro kladné hodnoty vrati ¢islo 1, pro zaporné ¢islo —1 a pro 0 vrati 0.

Ukol 2.4. Jsou dany tii cela ¢isla a,b a ¢. Rozhodnéte, zda a nalezi do otevie-
ného intervalu (b, ¢).

Ukol 2.5. Ukolem je napsat program, ktery zakovi piifadi znamku z bodované
pisemky. Jsou dany bodové hranice pro jednotlivé znamky x4, x3, x2 a x1. Pred-
pokladéame, ze plati x4 < x3 < 2 < x1. Déle je dan pocet bodu, které zak
ziskal. Aby Zzak naptiklad dostal ¢tyfku, musi ziskat aspon x4 a méné nez x3
bodu.

Ukol 2.6. Sefadte tii ¢isla podle velikosti.

Ukol 2.7. Jsou zadany tii délky (nezaporna &isla). Rozhodnéte, zda je mozné
sestrojit trojihelnik, jehoz strany budou mit zadané délky.

Ukol 2.8. Rozhodnéte, zda je trojuhelnik, u néhoz zname délky vSech t¥f stran,
pravouhly.

Ukol 2.9. Jsou dany velikosti vnitinich thli trojahelniku, vratte jedna, pokud
je trojuhelnik ostrodhly, dva, pokud je pravouhly a t¥i, pokud se jedna o tupo-
uhly trojuhelnik. Rozhodnéte, zda je trojuhelnik, u néhoz zndme délky v8ech tii
stran, pravouhly.

Ukol 2.10. Rozhodnéte, zda ¢ty¥i dana &isla tvori aritmetickou posloupnost.

Ukol 2.11. Pro bod vratte ¢islo kvadrantu. Pravy horni kvadrant ma &slo
jedna, levy horni dva, levy spodni t¥i a kone¢né pravy dolni ¢tyfi.

Ukol 2.12. V soufadnicovém systému je dan bod a obdélnik. Bod soufadnicemi
Dz & Py, obdélnik soufadnicemi levého horniho rohu 7, a r, déle sitkou w a
vyskou h. Rozhodnéte, zda bod lezi uvnitt obdélniku.

Ukol 2.13. Do jakych kvadranti zasahuje tsecka dana souradnicemi koncovych
bodu?

Ukol 2.14. Néktera desetinna &isla mizeme zapsat ve tvaru s - 10¢, kde s je
trojciferné ¢&islo a e je celé &slo. Napiiklad 5 = 500 - 1072, 0,1 = 100 - 1073 a
1200 = 120 - 10'. Naopak &slo 1234 v tomto tvaru zapsat nelze. Cislo tohoto
tvaru tedy miiZeme reprezentovat dvojici ¢isel s a e. NapiSte program, ktery
seCte dveé ¢isla tohoto tvaru. Vysledek musi byt opét zadaného tvaru. Napiiklad
pro 120 -10° a 300 - 102 program vrati 123 - 10° nebo pro 999 - 10 a 100 - 102
program vrati 100-10%. V pifpadé potieby mizete zaokrouhlovat. Napiiklad pro
901-10° a 100-10° program vrati 100-10' nebo pro 100-10° a 100-10° program
vrati 100 - 10°.

21

3 Treti seminar
3.1 Klauzule prikazu vétveni

Vezméme si nasledujici program, ktery vrati ¢islo jedna, pokud je vstup vétsi
jak dvacet a jinak vrati ¢islo dve.

x = 10

if x > 20:
y=1
if x <= 20:
y =2

print(y)

Vsimnéme si, ze bude platit pravé jedna z podminek x > 20 a x <= 20.
Pokud zname pravdivost prvni podminky, nema smysl vyhodnocovat druhou
podminkou - jeji pravdivost jiz znéme.

Rozsitime si ptikaz vétveni, aby jednoduse vyjadiil podobné situace. Nejdiive
si zavedeme pojem bloku. Blok je

Y41
Pn
kde p1,...,p, jsou prikazy. Neboli blok je posloupnost pfikazti. Nyni pokud
v je podminka, b; a by bloky, pak

if v:
b1

else:
by

je dalsi forma piikazu vétveni. Castem

ifou:
by

else:
by

se Tiké klauzule prikazu vétveni. Kazda klauzule m4 hlavicku a télo. Hlavicka
zacina klicovym slovem a kon¢i dvojteckou. Télo je odsazeny blok pfikazt. Tedy
piikaz vétveni muize mit jednu nebo dvé klauzule. Vykonéni piikazu vétveni
s klauzuli else probiha tak, Ze se nejprve vyhodnoti podminka v. Pokud je
pravdiva, vykona se blok by, jinak se vykoné blok bs.

Uvodni piiklad je tedy mozné tspornéji zapsat nasledovné.

22

x = 10

if x > 20:
y=1
else:
y =2

print(y)
Podivejme se na program pocitajici znaménkovou funkci:
n =10

if n > 0:
signum

if n < 0:
signum = -1

if n ==
signum = 0

1l
[

print (signum)
S pouzitim klauzule else pifikazu vétveni jej miZeme piepsat nasledovné.
n =10

if n > 0:
signum = 1
else:
if n < 0:
signum = -1
else:
signum = 0

print (signum)

MiuZeme si predstavit, ze program se déli do t¥i vétvi. Zde musime pouzit
vnofené vétveni, protoze zatim piikaz vétveni umoziuje rozdélit program do
dvou vétvi.

Roz&ifime si piikaz vétveni tak, aby mohl program rozdélit do libovolného

poétu vétvi. Pokud vy, vs ..., v, jsou podminky a by, by ..., b,,b,41 jsou bloky,
pak
if V-
b1
elif vy:
by

23

elif v,:
bn,

else:
bn+1

je dalsi forma pfikazu vétveni.

Vidime, ze jsme umoznili pfidavat klauzule elif mezi klauzule if a else.
Ptikaz se vykona tak, Ze se postupné vyhodnocuji podminky vy, vs, ..., v, aZ se
narazf na prvni pravdivou. Reknéme, Ze prvni pravdiva podminka je v;. Pak se
vykona blok b; a vykonavani piikazu skon¢i. Pokud by zadna podminka nebyla
pravdiva, vykona se blok b, 1.

Znaménkovou funkci lze za pouziti klauzule elif zapsat pouze jednim pfi-
kazem vétveni takto:

n =10
if n > 0:
signum = 1
elif n < 0:
signum = -1
else:
signum = 0
print (signum)
Poznamenejme, Ze klauzule else je nepovinné a ze podminky vy ..., v, ne-

musi byt vyluéné. Program, ktery pro zaporné ¢isla vytiskne jednic¢ku a pro &isla
mensi nez deset dvojku lze zapsat nasledovné.

n= -2

if n < 0:
print(1)
elif n < 10:
print(2)

Zde dojde jen k tisku ¢isla jedna, prestoze podminka n < 10 klauzule elif
je pravdiva. Pro n rovno 10 program nic nevytiskne.

Cast o piikazu vétveni ukonéime shrnutim. Pfikaz musi zac¢inat klauzuli if,
nasledovat muze nékolika klauzulemi elif a miize koncit jednou klauzuli else.

3.2 Iterace

Ptedstavme si, ze chceme né&jaky kus kodu opakovat pétkrat pouze se zménou
jisté hodnoty v kodu. Naptiklad chceme postupné vytisknout v8echna nezaporné
¢isla mensi nez pét. Mizeme to provést nasledujicim programem.

24

print(0)
print(1)
print(2)
print(3)
print(4)

Lze kol splnit tak, aby piikaz tisku byl pfi kazdém kroku stejny? Odpoved
je pozitivni:

i=0
print(i)
i=1
print(i)
i=2
print(i)
i=3
print(i)
i=14
print(i)

Touto technikou muZzeme blok piikazi opakovat, ale pocet opakovani musi
byt pfedem zadan. Vidime, Ze v bloku méame k dispozici ¢islo opakovani v pro-
ménné i. Co ale kdyz pocet opakovani nezname pfedem? Chceme napiiklad
vytisknout vSechna nezaporna celé ¢isla mensi nez zadané &islo. Za timto uce-
lem zavedeme piikaz cyklu for. Jedna se podobné jako piikaz vétveni o slozeny
piikaz. Slozené piikazy jsou piikazy, které se skladaji s klauzuli, jejichz téla ob-
sahuji opét prikazy. Méjme jméno proménné i, vyraz v jehoz hodnota je celé
nezaporné ¢islo a blok b, pak

for i in range(v):

b

je prikaz cyklu for. Tento piikaz se vykona tak, Ze se nejdiive vyhodnoti
vyraz v a tim se ziské ¢islo n udavajici pocet opakovani. Dale se n krat vykonaji
piikazy bloku b. Pfed kazdym vykonénim bloku se nastavi hodnota proménné
na Cislo opakovani, které se poc¢ita od nuly. Tedy pfi prvnim opakovani bude i
nastaveno na 0, pfi druhém na 1 a tak dale.

Vyse uvedeny program lze tedy prepsat nasledovné.

for i in range(5):
print(i)

Pocet opakovani jiz mize byt proménnou:
n=>5

for i in range(n):
print(i)

25

Vsimnéte si, Zze proménna ¢ je nastavena pied kazdym vykonanim téla cyklu.
Jeji zménou tedy nelze ovlivnit pocet opakovani. Nasledujici program napiiklad
desetkrat vytiskne nulu bez ohledu na pitkaz i = i + 1.

for i in range(10):
print(0)
i=1+1

Pokud proménna i méla pred vykonanim cyklu néjakou vazbu, je tato vazba
zménéna. Navic z toho jak vykonani cyklu probiha plyne, Zze po skonéeni cyklu
bude mit proménné ¢ vazbu na &islo posledni iterace. Napitiklad nasledujici pro-
gram desetkrat vytiskne nulu a poté devitku.

i=35
for i in range(10):

print(0)
print(i)

Pokud pocet opakovani n vyjde rovny nule. Pfikaz cyklu for se rovnou
ukonc¢i. Napiiklad program

for i in range(0):
print(1)

nic neudéla.

Co kdyz budeme chtit vytisknout vSechna sudé ¢isla mensi nebo rovno nez
zadané Cislo? MiZeme postupovat dvojim zpusobem. Zaprvé je mozné vlozit
piikaz vétveni do prikazu cyklu:

n =10
for i in range(n):
k=1i+1
if k%2 ==
print (k)
Zadruhé muzZeme upravit pocet opakovani:

n = 10

for i in range(n // 2):
print((i + 1) * 2)

Nasledujici program vytiskne vSechny délitele zadaného &isla.

Vytiskne vSechny délitele zadaného ¢isla.
n = 100

26

for i in range(n):
k=1i+1
ifn % k == 0:
print (k)

Predchozi program sta¢i mirné upravit a obdrzime program rozhodujici o
tom, zda je dané &islo prvocislem.

Rozhodne, zda je ¢islo prvocislo.
n=7

divisor_count = 0
for i in range(n):
k=1i+1
ifn% k == 0:
divisor_count = divisor_count + 1

is_prime = divisor_count ==
print(is_prime)

V téle cyklu muze byt dalsi cyklus. Pfedchozi program rozhodujici o tom,
zda je ¢islo prvocislo, mizeme upravit tak, aby vytiskl vSechna prvocisla mensi
nebo rovno nez zadané ¢&islo:

Vytiskne vSechna prvocisla mens$i nebo rovno nez zadané cislo.
m = 1000

for j in range(m):
n=j+1
divisor_count = 0
for i in range(n):

k=1i+1
ifn %k == 0:
divisor_count = divisor_count + 1
is_prime = divisor_count == 2
if is_prime:
print(n)

Pted zadanim tkoli si rozsitfime piikaz tisku o moznost vytisknout vice hod-
not na jeden radek. Pokud vq,...,v, jsou vyrazy, pak

print(vy,,...,v,)

je rozsiteni prikazu tisku. Piikaz se vykona tak, Zze postupné vyhodnoti vy-
razy vi,...,U, a hodnoty vytiskne za sebe oddélené mezerou. Napitiklad

27

>>> print(1+1, 2, True or True)
2 2 True

Specidlnim piipadem je pouziti prikazu tisku bez vyrazi v;. Pitkaz print()
pouze vytiskne prazdny radek.

>>> print()
>>>

Ukol 3.1. Je dan prvni ¢len a; a rozdil mezi sousednimi ¢leny d aritmetické
posloupnosti. Vytisknéte prvnich n ¢lent této posloupnosti.

Ukol 3.2. Sectéte prvnich n ¢lent aritmetické posloupnosti dané prvnim ¢lenem
a1 a rozdilem sousednich ¢lent d. Nesmite pouzit souétovy vzorec.

Ukol 3.3. Vytisknéte viechny délitele dvou zadanych pFirozenych &isel.
Ukol 3.4. Rozhodnéte, zda jsou dvé zadana pFirozené Eisla nesoudélna.

Ukol 3.5. Je dano pfirozené &islo n. Vytisknéte vSechna pfirozena ¢isla mensi
nez n, ktera jsou s n nesoudélna.

Ukol 3.6. Vytisknéte viechny trojce a, b, ¢ piirozenych ¢isel mensich ne zadané
2

&islo, pro které plati a? + b? = 2.
Ukol 3.7. Jsou déana pfirozena &isla n a m > 2. Rozhodnéte, zda existuji
prirozena ¢isla a, b, c mensi nebo rovno nez n a prirozené ¢islo k vétsi nez 2 a
mensi nebo rovno nez m takova, ze a® 4+ b* = c*. (Podle Velké Fermatovy véty
musi byt odpovéd vzdy zaporna.)

Ukol 3.8. Prvoéiselné dvojce je prvoéislo, které je bud o dva vétsi, nebo o dva
mensi nez jiné prvocislo. Vytisknéte kazdé prvociselné dvojce mensi nebo rovno
nez zadané ¢islo.

Ukol 3.9. Spoditejte faktorial n! zadaného &isla n. Faktorial nuly je jedna 0! = 1
a pro faktorial nenulového n plati n! =n - (n — 1)\

Ukol 3.10. Je dano piirozené &islo n. Vytisknéte prvnich n prvki Fibonacciho
posloupnosti. Prvni dva prvky posloupnosti jsou nula a jedna. Kazdy dalsi prvek
je sou¢tem dvou predchozich prvkia.

Ukol 3.11. Je dano prirozené &islo n a cela &isla ag a . Vypiste prvnich n cleni
geometrické posloupnosti zac¢inajici prvkem ag a s kvocientem gq.

Ukol 3.12. Vrafte soucet prvnich n ¢lent geometrické posloupnosti za¢inajici
celym ¢&islem ag s kvocientem g bez pouziti sou¢tového vzorce.

28

3.3 Tisk retézce znaku

Nejprve si zavedeme novy typ hodnot: Fetézce. Retézce jsou hodnoty, které ucho-
vavaji posloupnosti znakt. Muzeme je vlozit do programu podobné jako ¢isla ve
formé literalu tak, ze do apostrofii umistime znaky fetézce. Presnéji pokud s je
posloupnost znaki, pak

[|

S

je Tetézec. Podobné jako ¢islo i Tetézec je vyraz a jelikoz se jedné o hodnotu,
vyhodnocuje se sam na sebe. Proto naptiklad plati

>>> 'Python'
'Python'

Vyraz 'Python' vytvori fetézec obsahujici Sest znaku: P, y, t, h, o, n. Mi-
zeme vkladat i znaky s diakritikou:

'Prilis Zlutoucky kun upél dabelské ody.'

Jak vidime, Fetézec muze obsahovat i mezery. Nékteré znaky muzeme vlo-
7it pouze pomoci takzvané escape sekvence. Naptiklad znak apostrofu vloZime
znaky \'. Tedy "\'"' je fetézec délky jedna obsahujici apostrof. Dale mame sek-
venci \n pro novy fadek a sekvenci \\ pro zpétné lomitko. Novy Fadek je tedy
jeden znak v Fetézci.

>>> print('a\nb')
a
b

v

Specialnim pfipadem je Fetézec
zadny znak.
Alternativné lze zadat fetézec umisténim jeho znaki do uvozovek:

'. Jedna se o Tetézec, ktery neobsahuje

>>> "Python"
'Python'

Tisk fetézce pouziva prednostné apostrofy, ale v pripadé, ze Fetézec obsahuje
apostrof a neobsahuje uvozovky pouziji se k tisku uvozovky:

>5> l\ll

nmrn

P1i pouziti uvozovek k zadani fetézce je samoziejmé potieba uvozovky v
fetézci zadavat escape sekvenci:

>>> "Karel rekl: \"Vida, prsi.\""
'Karel rekl: "Vida, prsi."'

29

Zatim si nepfedstavime zadné operatory pracujici s fetézci. Retézce budeme
pouzivat pouze k tisku.

Pokud chceme v piikazu tisku zamezit tisku nového fadku pouzijeme nasle-
dujici jeho formu. Pro vyrazy vq,...,v, je vyraz

print(vy, ..., v,, end="")

forma ptikazu tisku, ktera pfi vykonéni po tisku hodnot nevytiskne novy
radek. Napitiklad:

>>> print(1l, end="'")
1>>>

Nasledujici program vytiskne ¢tverec hvézdic¢ek o hrané n.

Vytiskne c¢tverec hvézdicek o zadané hrané.
n =10

for i in range(n):
for j in range(n):
print('*', end="")
print('")

Vystup programu je:

Ukol 3.13. Pro zadanou délku vytisknéte tverec hvézdicek s prazdnym vniti-
kem. Naptiklad pro 5 program vytiskne

Fededehk

Ukol 3.14. Pro zadané piirozené &slo n vytisknéte pravouhly rovnoramenny
trojuhelnik hvézdi¢ek s rameny délky n.

30

Fededehk

Ukol 3.15. Pro zadany pocet pater vytisknéte trojuhelnik hvézdicek podobny
nize uvedenému. Napfiiklad pro pét pater vypada trojihelnik takto:

Ukol 3.16. Pro zadané prirozené ¢islo n, vytisknéte z hvézdicek diamant, ktery
bude mit n-2+1 pater. Naptiklad pro ¢&islo tii ma diamant sedm pater a vypada
nésledovné.

4 Ctvrty seminar
4.1 Rozsifeny prikaz prirazeni

Vezméme si jednoduchy program, ktery ¢islo zvétsi o jedna.

n=2>5
n=n-+1
print(n)

Zde piikaz n = n + 1 zvysi hodnotu proménné n o jedna. Zvyseni hodnoty
proménné o libovolnou hodnotu muzeme provést tispornéji nasledujicim piika-
zem. Pokud i je jméno proménné a v je vyraz, tak

L +=0

je rozsifeny prikaz prifazeni. Vykonani piikazu probéhne stejné, jako bychom
napsali:

1=1+v

31

Vyse uvedeny program miizeme tedy prehlednéji napsat nasledovné.

n=>5
n+=1
print(n)

Podobné lze pouzit rozsiteny piikaz pfifazeni pro vSechny binérni operatory.
Presnéji je-li ¢ jméno proménné, o jeden z operatoru +, -, *, // nebo % a v vyraz,
pak

1 0=

je rozsiteny piikaz pfifazeni. Vykonani pfikazu probé&hne stejné, jako by byl
misto néj uveden piikaz:

1=100

Co vytiskne nasledujici program?

n=1
n+=1
n **= 3
n//=2
n-=1
n *= 2
n %= 4
print(n)

4.2 Podminec¢né opakovani

Vratme se k tisku cifer trojciferného ¢isla:

n = 123

nl =n
c=nl%10
nl =nl // 10
print(c)
c=nl%10
nl =nl // 10
print(c)
c=nl%10
nl =nl1 // 10
print(c)

32

S pouzitim rozsifeného pfikazu pfifazeni lze program piepsat takto:
n = 123
nl =n

c=nl%10
nl //= 10
print(c)

c=nl %10
nl //= 10
print(c)

c=nl%10
nl //= 10
print(c)

K dalsimu zjednoduSeni muazeme pouzit piikaz for cyklu:
n = 123

nl =n

for i in range(3):
c=nl % 10
nl //= 10
print(c)

Co kdyz budeme chtit program upravit tak, aby vytiskl vSechny cifry zada-
ného ¢isla? Narazime na problém, Ze neumime ziskat pocet cifer ¢isla. Program
bychom radi upravili tak, aby télo cyklu probihalo, dokud bude ¢islo nl nenu-
lové. Za timto tcelem zavedeme néasledujici piikaz.

Pokud v je podminka a b blok, pak

while v:
b

je prikaz podminéného opakovéani, nebo-li piikaz while cyklu. Podobné jako
piikaz for cyklu, se jedna o sloZeny pifkaz s jednou klauzuli while. Ptikaz se
vykoné tak, Ze se opakuje nasledujici. Nejdiive se vyhodnoti podminka v. Pokud
je podminka pravdiva, vykona se blok b, jinak se vykonévani piikazu ukon¢i.

S pouzitim pfikazu podminéného opakovani miZeme nas§ program napsat
takto:

n = 123

nl =n

33

while nl1 !'= 0:
c=nl% 10
nl //= 10
print(c)

Cyklus zde nejdiive zkontroluje, zda nl je nenulové. Pokud by nl bylo nula,
pak by program skon¢il. Jinak do proménné c uloZi posledni cifru nl, z nl
odstrani posledni cifru a cifru c vytiskne. Ve funguje diky tomu, Ze z ¢isla nl
postupné ubyvaji cifry az nakonec ziskime nulu.

Vsimnéte si, ze program nefunguje pro ¢islo nula. Dokazete ho spravit?

Cyklus while do programi muze piinést novy druh chyb. Dosud programy
vzdy skonéily. Nyni se miiZze stat, Ze program bude pocitat navzdy a nikdy
neskonéi. Trividlni piiklad takového programu je:

while True:
print(0)

Program po spusténi bude donekonecna tisknout nuly. f{ikéme, Ze program
cykli. Jeho ¢innost musite v terminélu ukonéit kombinaci klaves Ctrl+-C.

Ne vzdy je pad do nekone¢né smycky takto prizraény. Vezméme si na ukizku
néasledujici program.

n = 10

nl =n

while nl1 != 0:
print(nl)
nl -= 2

7da se, ze program tiskne ¢isla mensi nebo rovno nez zadané ¢&islo a pritom
kazdé druhé vynechavé. Co se ale stane, kdyz jej spustime pro devitku? Program
vytiskl:

= W v NN O

Pak preskocil nulu a pokracuje dale

-1
-3
-5
-7

sméfujice k zdpornému nekoneénu. Program tedy nékdy skondi a jindy cykli.
Chyba je v podmince n1 !'= 0. Dokézete ji spravit tak, aby program vzdy skon-
¢il?

Vezméme si obecny piiklad for cyklu:

34

for i in range(v):
b

Zde i je jméno proménné, v vyraz a b blok. Pfedpokladejme, Ze blok b neméni
hodnotu proménné ¢ a nepouziva proménnou n. Pak cyklus for mizeme pfepsat
pomoci cyklu while nésledovné.

n=uv
i=0
while 7 < n:
b
i+=1

Naptiklad program

for i in range(5):
print(i)

lze ekvivalentné zapsat takto:

n=>5

i=0

while i < n:
print(i)
i+4=1

Cyklus while nemuzeme obecné piepsat na cyklus for a to z toho divodu,
ze cyklus for narozdil od cyklu while vzdy skoné¢i. Kone¢nost vykonévani for
cyklu je velikou vyhodou. Proto se budeme snazit tam, kde je to mozné, upted-
nostnit for cyklus pfed while cyklem. Lze Fici, ze for cyklus pouzivame, kdyz
zndme dopredu pocet opakovani.

Vratme se k rozhodovéni, zda je ¢islo prvocislem:

n=>5

is_prime = True
for i in range(n - 2):
j=1i+2
ifn% j==
is_prime = False

print (is_prime)
Pro ¢islo tisic program uZ po prvni iteraci vi, Ze neni prvocislo (podminka
1000 % 2 == 0 je pravdiva), ale pfesto pokratuje zbyte¢né dal. Pojdme pro-

gram upravit tak, aby skonéil, jakmile zjisti, Ze ¢islo neni prvocislem. Nejprve
prepiSseme for cyklus while cyklem:

35

n=2>5

is_prime = True
j=2
while j < n:

ifn%j==

is_prime = False

j+=1
print(is_prime)

Nyni jiz sta¢i upravit podminku cyklu:

n=>5

is_prime = True
j=2
while j < n and is_prime:

ifn% j==0:

is_prime = False

j+=1
print(is_prime)

Nésleduje nékolik tkold na procvi¢eni podminéného opakovani.

Ukol 4.1. Vrafte ciferny soucet pfirozeného &isla.

Ukol 4.2. Vratte cifraci pfirozeného &isla. Cifrace &isla n je &slo n v pifpadé,
ze n je jednociferné. V opacném ptipadé je to cifrace ciferného souctu ¢isla n.
Naptiklad pro 99, nejprve spocitame ciferny soucet 9 + 9 = 18, protoZze 18 neni
jednociferné ¢islo, proces opakujeme. Ciferny soucet ¢isla 18 je 1+8 = 9 a to je
i vysledek cifrace.

Ukol 4.3. Vytisknéte rozklad pFirozeného &isla na prvodisla.

Ukol 4.4. Je dano piirozené &slo. Vratte ¢islo jeho# cifry jsou cifry daného
¢isla ¢tené pozpatku.

Ukol 4.5. Rozhodnéte, zda je libovolné pFirozené &islo palindrom.
Ukol 4.6. Vratte celou ¢ast logaritmu pFirozeného ¢&isla o daném zakladu.

Ukol 4.7. Rozhodnéte, zda jsou dvé &isla nesoudélna. Ukonéete program, jakmile
zjistite netrivialniho délitele.

Ukol 4.8. Je dan pocet cifer n. Vytisknéte viechna n-ciferna &isla.

Ukol 4.9. Vratte pocet cifer zadaného piirozeného éisla.

36

Ukol 4.10. Jsou dana pfirozena &isla n a k, kde k < n. Vratte nejmensiho
délitele ¢isla n, ktery je vétsi nebo rovno nez ¢islo k.

Ukol 4.11. Je dano &slo n. Vytisknéte prvnich n dokonalych ¢isel. Cislo k je
dokonalé, jestlize soucet déliteltt k& mensich nez k je roven k. Napriklad Sestka
je dokonalé ¢islo, protoze 6 =1+ 2 + 3.

Ukol 4.12. Pomoci Eukeidova algoritmu spoéitejte nejvétsiho spole¢ného déli-
tele dvou ¢isel.

Ukol 4.13. Za pouziti feSeni predchoziho tkolu spoéitejte nejmensi spole¢ny
nasobek dvou ¢&isel.

Ukol 4.14. Vratte celou ¢ast odmocniny nezaporného &sla.

Ukol 4.15. Upravte rozhodovani prvodiselnosti tak, aby program zkousel jen
¢isla mensi nez odmocnina z daného ¢isla. Vyuzijte vysledek z pfedchoziho tkolu.

5 PAty seminar
5.1 Preruseni iterace

Neékdy by bylo vyhodné pierusit iteraci zptisobenou pfikazem cyklu for. Vratme
se opét k testu prvociselnosti.

n=7

is_prime = True
for i in range(n - 2):
j=1+2
ifn% j==0:
is_prime = False

print(is_prime)

Pokud chceme cyklus prerusit v momenté, kdy narazime na netrividlniho
délitele, museli bychom jej nyni prepsat na while cyklus. Nepiijemné by ale bylo,
ze bychom ztratili zaruku kone¢ného vykonévani, kterou cyklus for pfinasi.
Proto si zavedeme novy ptikaz break nazyvany piikaz preruseni cyklu, ktery lze
pouzit v téle for cyklu. P¥ikaz preruSeni cyklu se vykona tak, jak ostatné nazev
napovida, Ze se okamzité ukon¢i nejvnitinéjsi cyklus, ve kterém se vykonavani
nachazi.

Program muzeme tedy s ispéchem prepsat takto:

n=7

is_prime = True
for i in range(n - 2):

37

j=1+2

ifn% j==0:
is_prime = False
break

print(is_prime)

Nyni se po nalezeni netrivialnfho délitele cyklus ukondi.
Prikaz ukonceni cyklu se musi nachazet v téle cyklu. Proto spusténi programu

print(1)
break
print(2)

koné¢i chybou SyntaxError: 'break' outside loop. Vsimnéte si, Ze se
jedna o chybu zéapisu, ktera se odhali jesté pred spusténim programu.

Vezméme si nyni nasledujici program, ktery tiskne dvojce nezapornych ¢&isel
mensich nez zadané ¢islo.

n =10

for i in range(n):
for j in range(n):
print(i, j)

Co kdyz budeme chtit program upravit tak, aby prvni ¢islo bylo mensi nebo
rovno nez druhé ¢islo. Prvni verze by byla nasledujici.

n = 10

for j in range(n):
for i in range(n):
if i <= j:
print(i, j)

Za pouziti vétveni tiskneme jen nékteré dvojce. Tato varianta vSak nenf
efektivni, protoze zbytecéné prochazime spoustu dvojic ¢isel. Program muzeme
vylepsit vhodné umisténym piikazem pieruSeni cyklu:

n =10

for j in range(n):
for i in range(n):
if j < 1i:
break
print(i, j)

38

Kod funguje, protoze break vysko¢i z for cyklu s itera¢ni proménnou i. Je
ale pouziti piikazu prerusSeni cyklu nutné? Neumime program napsat lépe bez
n&j? Odpovéd je kladna. MuZeme upravit poéet opakovani vnofeného cyklu:

n = 10
for j in range(n):
for i in range(j + 1):
print(i, j)
Tim jsme zvysili ¢itelnost programu. Proto si zavedeme pravidlo, ze break

budeme pouzivat pouze v pripadech, kdy bychom museli jinak prepsat for cyk-
lus na while cyklus.

5.2 Volani funkce

Zastavme se na chvili u piikazu tisku. Vezméme si naptiklad

>>> print(1)

1
Ve skutecnosti tento piikaz vola funkci print s argumentem 1. Obecnéji je-li
f jméno funkce a vy, ...,v, jsou vyrazy, pak
f(Ull ey Un)

je volani funkce. Kazdé volani funkce je vyrazem. Za nazvem funkce f ne-
piSeme mezeru, ale za kazdou ¢arkou oddélujici podvyrazy ano. Vyraz se vy-
hodnoti tak, Ze se postupné vyhodnoti vyrazy v1,...,v, tim ziskdime hodnoty
hi,...,hy,. Poté zavolame funkci f s argumenty hy, ..., h,. Volani funkce vrati
hodnotu, ktera je i hodnotou vyrazu volani funkce.

Nasledujici piikazy jsou vyrazy volajici funkci print.

print(1, 2, 3)
print()
print(1l, end="'")

Posledni volani obsahuje takzvany pojmenovany argument end, ktery vo-
lani pripousti, ale naSe definice jej zatim nepostihuje. PouZiti pojmenovaného
argumentu si dovolime pouze u funkce print.

Volani funkce je vyraz, musi tedy mit néjakou hodnotu. Podivejme se, jakou
hodnotu ma volani funkce print.

>>> print(print(1))

1
None

39

Tisk jednicky provedlo volani print (1), které vratilo hodnotu None vytisté-
nou nasledujicim volanim funkce print. Hodnotu None budeme nazyvat prdzdnd
hodnota. Prazdnéa hodnota je jedind hodnota svého typu (typu prdzdné hodnoty).
Pfipomenime, Ze zname hodnoty rizného typu. Dosud zndmé typy jsou disla,
pravdivostni hodnoty, Fetézce a nyni jesté typ prazdné hodnoty. Prazdnou hod-
notu davame tam, kde chceme sdélit, Ze zde ve skutecnosti zadna hodnota neni.
To je ptiklad hodnoty volani (ndvratové hodnoty) funkce print. V interaktivnim
rezimu plati, Ze prazdnou hodnotu interpret ve fazi tisku netiskne. Tedy:

>>> None
>>>

Jméno proménné nesmi kolidovat s nazvem funkce. Proto nasledujici pro-
gram skoné¢i chybou.

print = 1
print(1)

Chybé TypeError: 'int' object is not callable je tfeba rozumét tak,
Ze po zmeéné hodnoty proménné print na ¢islo jedna, piestalo byt print funkci
a neni jiz mozné tuto funkci zavolat. Nazvy funkci poznate tak, Ze se ve studiu
zabarvi modte. ZakaZeme si tyto nazvy pouzivat jako nazvy proménnych. Tedy
print je zakdzany nazev proménné.

5.3 Prace s retézci

Dosud umime pouze fetézce vytvaret tak, Ze jejich znaky obklopime uvozov-
kami. Napiiklad vyraz 'Python' mé hodnotu Fetézec se znaky Python. Nyni si
ukaZzeme, jak s Fetézci pracovat.

Funkce len bere jako sviij argument Fetézec a vraci jeho délku. Napiiklad:

>>> len('Python')
6

>>> len(''")

0

Jednoprvkovy Fetézec je znak. Tedy napiiklad fetézec 'P' je i znakem.
Pokud v, a v; jsou vyrazy, pak

Us [Uz]

je vyraz indexacniho operdtoru. Vyraz se vyhodnoti tak, Zze se nejprve vy-
hodnoti vyraz vs a tim se ziskd hodnota h,, pak se vyhodnoti vyraz v; a tim se
ziskad hodnota h;. Jestlize hodnota h; je fetézec a hodnota h; celé nezaporné &islo
mensi nez délka Tetézce hg, pak hodnota indexa¢niho operatoru je (h; + 1)-ty
znak Fetézce hs. Rikédme taky znak Fetézce hg na indexu h;.

Nésleduji priklady pouziti.

40

>>> "Python'[0]
pr

>>> s = 'Python'
>>> s[0]

pr

>>> s[5]

n

Hodnota vyrazu s[0] je tedy prvni znak Fetézce s.
Pokus ziskat znak na indexu v&tSim nebo rovném nez je délka fetézce vede
k chybé.

>>> s[6]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

S pomoci iterace muZzeme napsat program tisknouci vSechny znaky zadaného
fetézce.

string = 'Python'

for i in range(len(string)):
print(string[i])

Binéarni operéator + lze pouzit k spojovani fetézci. Pfesnéji pokud vy a wve
jsou vyrazy jejichz hodnoty jsou Fetézce s1 a sq, pak hodnota v; + vy je Fetézec
vznikly spojenim Tetézci s; a so. Proto

>>> 'Py' + 'thon'
'Python'

Operator + slouzi jak k s¢itani ¢isel, tak k spojovani fetézct. Oba operandy
v8ak musi byt bud retézce, nebo ¢isla. Proto ziskani hodnot nasledujicich vyrazi
skon¢i chybou:

>> '1' + 1
TypeError: can only concatenate str (not "int") to str
>> 1+ '1'
TypeError: unsupported operand type(s) for +: 'int' and

str

Vypis chyb je zkraceny pouze na chybovou hlasku.
Nésledujici program oto¢i poradi znakt v zadaném fetézci.

string = 'Python’

reverse =

41

for i in range(len(string)):
reverse = string[i] + reverse

print(reverse)

Operatory == a != lze pouzit k porovnéavani fetézct. Pfitom dva fetézce jsou
stejné, pokud maji stejnou délku a znaky na odpovidajicich indexech se rovnaji.
Proto

>>> string = 'Python'’
>>> string == 'Python'
True

>>> 'p' I= 'P'

True

>>> 'python' == 'Python'
False

Vsimnéte si, Ze porovnavan{ je citlivé na velikost pismen. Ve skutecnosti
muZzeme porovnavat na rovnost ¢isla a fetézce.

>>> 1 == "'1"
False
>>> '1' I=1
True

Plati, Ze hodnoty ruznych typi se nerovnaji.
Otoceni fetézce v kombinaci s porovnavanim fetézci miuzeme pouzit k roz-
hodnuti, zda je program palindrom

string = 'kobylamamalybok'

(]

reverse =
for i in range(len(string)):
reverse = string[i] + reverse

is_palindrom = string == reverse
print(is_palindrom)

Program lze napsat i bez otéceni Fetézce prosté tak, Ze porovnéavame odpo-
vidajici znaky:

string = 'kobylamamalybok'
is_palindrom = True

string_len = len(string)
i=0

42

n = string_len // 2
while i < n and is_palindrom:

if string[i] != string[string_len - 1 - i]:
is_palindrom = False
i+=1

print(is_palindrom)

Kazdému znaku je jednozna¢né piifazené nezaporné ¢islo. Predstavime si
dvé funkce, které prevadi mezi sebou znaky a ¢isla. Funkce chr vraci znak k
zadanému &slu a funkce ord vraci &slo zadaného znaku. Cisla nékterych znaki
uréuje ASCII tabulka. Velkd pismena anglické abecedy se zacinaji ¢islovat od
65. Tedy naptiklad znak A m& ¢&islo 65, znak 'L' ¢&islo 76 a posledni znak 'Z'
¢islo 90:

>>> ord('A")
65
>>> ord('L")
76
>>> ord('Z")
90

Mala pismena anglické abecedy se ¢isluji od 97:

>>> ord('a'")
97
>>> ord('m")
109
>>> ord('z")
122

Tedy malé pismeno mé o 32 vétsi ¢islo nez stejné velké pismeno.
Zmaky odpovidajici ¢islicim jsou sefazené podle hodnoty a ¢isluji se od 48:

>>> ord('0")
48
>>> ord('1")
49
>>> ord('5")
53
>>> ord('9")
57

Pro pfevedeni ¢islice reprezentované jako znak na jednociferné &islo stejné
hodnoty musime od ¢isla ¢islice odecist 48:

>>> ord('0') - 48
0

43

Podivejme se na program, ktery prevede fetézec napsany malymi pismeny
na velki pismena:

string = 'python'
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - 32)

print(upper_case)
Nasleduji ukoly na praci s fetézci.

Ukol 5.1. Prevedte fetézec znaki islic na &islo zapsané témito ¢islicemi. Tedy
pro fetézec '456' vratte ¢islo 456.

Ukol 5.2. Pievedte zadané ¢islo na fetézec znaki jeho &islic. Napiiklad pro
¢islo 123 vratte fetézec '123'.

Ukol 5.3. Rozhodnéte, zda je Geska véta zadana jako Fetézec palindrom. Retézec
neobsahuje diakritickd znaménka. P¥i kontrole ignorujte velikost pismen, mezery
a interpunkci. Tedy Fetézec 'Kobyla ma maly bok.' je palindrom.

Ukol 5.4. Vytisknéte viechny slova obsazena v fetézci, kde sousedni slova jsou
oddélena mezerou. Napiiklad pro 'jablko banan hruska' vytisknéte:

jablko
banan
hruska

Ukol 5.5. Odstraiite nadbytedné mezery z fetézce obsahujici ¢eskou vétu. Na-
piiklad pro fetézec ' Kobyla ma maly bok. ' vratte 'Kobyla ma maly bok.'.

Ukol 5.6. Vytisknéte indexy viech vyskytil fetézce p v fetézci s. Napiiklad pro
fetézec p roven $tros a s roven
'PStros s pStrosici a pStrosacaty $1li do pStrosacarny.' vytisknéte:

1

10
22
41

Co program vytiskne, kdyz bude p rovno prazdnému fetézci? Je to spravné?

Ukol 5.7. Pro fetézec s a indexy i, a i, vratte podietézec fetézce s viech znaku
s indexem ¢, kde 75 < ¢ < 1.. Napfiklad pro s rovno 'Python', is rovno 2 a i,
rovno 5 vratte 'tho'. Co kdyZ nebudete predpokladat, Ze is < 4.7

Ukol 5.8. Rozhodnéte, zda dva fetézce obsahuji stejné znaky, kdyz méte po-
voleno porovnavat pouze fetézce délky jedna (znaky).

44

Ukol 5.9. Pro zadané fetézce s, Sp, 8t, kde s, neni prazdny, vratte fetézec, ktery
vznikne z Fetézce s tak, Ze se v8echny vyskyty fetézce s, nahradi fetézcem s;.
Program pro s rovno 'Dal jsem jablko do koSiku.', s, rovno 'jablko' a s,
rovno "hrusku' vrati 'Dal jsem hrusku do ko$iku.'. Nahrazeni '11' za '2'
v Tetézci '111111" musi vratit '222". Program musi byt schopny i odstranovat
podietézce. Tedy napiiklad pii nahrazeni ' ' v '1 23 4 56' fetézcem "' vrati
'123456".

Ukol 5.10. Prevedte kladné ¢islo mensi jak sto na zapis v fimskych &islicich.
Nepouzivejte odéitaci pravidla. Tedy 4 je "IIII'.

Ukol 5.11. Vrafte ke kladnému ¢slu mensimu jak devadesat jeho zapis v #im-
skych ¢islicich. Pouzivejte od¢itaci pravidla. Napiiklad pro 14 vratte 'XIV'.

Ukol 5.12. Vratte hodnotu fetézce obsahujiciho zapis isla za pouziti Fimskych
¢islic 1, V, X a L bez odé&itacich pravidel. Tedy pro 'XIIII' vratte 14.

Ukol 5.13. Pievedte fetézec obsahujici zapis piirozeného &sla mensiho nez
devadesat fimskymi ¢islicemi na ¢&islo. Zapis muize pouzivat odecitaci pravidla.
Napftiklad pro 'XLIX' vratte 49.

Ukol 5.14. Pro pfirozené &islo vratte Fetézec cifer jeho zapisu v dvojkové sou-
stavé. Napriklad pro 15 vratte '1111".

Ukol 5.15. Preved'te fetdzec obsahujici zapis ¢isla v dvojkové soustavé na &islo.
Tedy pro '10101' vratte 21.

Ukol 5.16. Vytisknéte ASCII znaky a jejich kody od 32. do 126. znaku véetné.

Ukol 5.17. Je dan fetézec s a nezaporné &islo n. Zagifrujte fetézec s obsahujici
pouze mal4 pismena tak, Ze kazdé pismeno posunete v ASCII kodu o n pozic
doprava. P¥i pokusu vyjit ven z malych pismen se vratte na zacatek. Tedy pova-
Zujte 'a' za naslednika 'z'. Naptiklad fetézec 'mraz' pro n rovno 2 zakdédujte
na 'otcb'.

Ukol 5.18. Pokud je potieba, upravte predchozi program tak, aby mohl zakodo-
vané slovo desifrovat. Tedy aby pro 'otcb' a —2 vratil zpét 'mraz'. Napovéda:
Podivejte se, jak funguje zbytek po déleni ze zaporného ¢isla.

6 Sesty seminar

6.1 Konstanty

Zatneme prevodem slova napsaného malymi pismeny na velka pismena.

string = 'python'

upper_case =
for i in range(len(string)):

45

upper_case += chr(ord(string[i]) - 32)

print (upper_case)

V programu se vyskytuje zdhadna hodnota 32. Kdyz jsme program psali,
védéli jsme co znamené. Pii ¢teni programu za delsi dobu v8ak jeji vyznam
nemusi byt zfejmy. Jedna moznost, jak program ucinit ¢itelnéjsi, by byla doplnit
komentar, ktery by hodnotu vysvétloval. My se vSak vydame druhou moznosti,
ktera nas nabadé k tomu si hodnotu pojmenovat.

Zavedeme si tedy proménnou letters_distance s hodnotou 32.

string = 'python'

letters_distance = 32
upper_case = "'
for i in range(len(string)):
upper_case += chr(ord(string[i]) - letters_distance)

print (upper_case)
Z nazvu je ziejmé, ze proménné vyjadiuje vzdalenost mezi pismeny. Z povahy
programu uZz nas trkne, Ze se jedna o vzdalenost ¢isel malych a velkych pismen.
Proménna letters_distance je vyjimeéné v tom, Ze se po béhu programu
neméni jeji hodnota. Takovym proménnym budeme fikat konstanty a budeme
je psat velkymi pismeny.

string = 'python'
LETTERS_DISTANCE = 32
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - LETTERS_DISTANCE)
print(upper_case)

Jesté muzeme ulinit jeden krok k zlepSeni Citelnosti programu, kterym je
doplnit vypodcet hodnoty konstanty.

string = 'python'
LETTERS_DISTANCE = ord('a') - ord('A")
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - LETTERS_DISTANCE)
print (upper_case)

7 vypoctu je zfejmé, jakou hodnotu konstanta uchovava.
Zavedeme si pravidlo, které nas povede k tomu si pro hodnoty v programu
zavadét konstanty.

46

6.2 Desetinna c¢isla

Dosud jsme se zabyvali pouze celymi ¢isly. V této ¢asti si predstavime zpi-
sob prace s desetinnymi ¢isly. Napfiklad ¢islo 0,2 s desetinnou ¢arkou zadame
pomoci desetinné tecky.

>>> 0.1
0.1

Aritmetické operatory pracujici také s desetinnymi ¢&isly.

>>> 0.1 + 0.1
0.2
>>> 0.5 * 0.2
0.1

Celé ¢islo muze byt zadano také jako desetinné ¢islo s pouzitim desetinné
teCky a nuly v desetinné ¢asi.

>>> 1.0
1.0

Pokud je jeden z operandu aritmetické operace celé ¢islo a druhy desetinné
¢islo, je celé ¢islo prevedeno na desetinné ¢islo.

>>> 2 * 0.1
0.2

Vysledek operace s desetinnymi ¢isly je vzdy desetinné ¢islo.

>>> 2 * 0.5
1.0

Zavedeme si novy binarni aritmeticky operator déleni (/). Jeho vysledkem
je vzdy desetinné ¢&islo.

>> 4 /2
2.0

>>> 0.1/ 0.2
0.5

Desetinné ¢islo také dostaneme pii pouziti operatoru mocniny se zapornym
mocnitelem.

>>> 2 %% -3
0.125

Pii zadavani desetinnych &sel lze pouzit i védeckou notaci. Cislo ve tvaru
a x 10° zapiSeme jako

47

aeb

Pouzitim védecké notace muzeme v kilogramech pohodlné vyjadiit jak nejmensi
hmotnost atomu 1,67 x 10727 vyrazem 1.67e-27 tak hmotnost sluce 1,9891 x
1039 vyrazem 1.9891e30.

P1i tisku interpret pouziva védeckou notaci pouze pro ¢isla s vétsi absolutni
hodnotou exponentu.

>>> le-2

0.01

>>> 1.23e2

123.0

>>> 10000000000000000.0
le+16

>>> 0.00001

le-05

Pocitani s desetinnymi ¢isly je pouze piiblizné. Proto s pfekvapenim zjistime,
7ze podminka 0.1 + 0.1 + 0.1 == 0.3 neni splnénA.

>> 0.1 + 0.1+ 0.1 ==20.3
False

Duvodem je, Ze interpret uchovava desetinné ¢isla v binarni podobé a to
pouze uréity pocet Cislic. Problém se vyjasni, kdyZz si predstavime, Ze chceme
uchovat ¢islo 1/3 jako desetinné &islo s ur¢itym poctem platnych mist. MaZzeme
napfiiklad ¥ici, Ze 1/3 se p¥iblizné rovna &islu 0, 333333, které si oznacime a. Jisté
nikoho nepiekvapi, ze a + a 4+ a neni rovno jedné. V binarni soustavé nastava
analogicky problém. Proto

>> 0.1 + 0.1 + 0.1
0.30000000000000004

Desetinna ¢isla budeme porovnavat pouze priblizné. Za timto ticelem si pred-
stavime funkci abs, ktera vraci absolutni hodnotu zadaného ¢isla. Funkce jako
argument bere jak celd tak desetinna &isla.

>>> abs(-0.1)
0.1

>>> abs(0.1)
0.1

>>> abs(3)

3

>>> abs(-3)

3

S pomoci funkce abs muzeme napsat program, ktery rozhodne, zda se dvé
desetinné ¢isla pfiblizné rovnaji.

48

a=20.3
=0.1+0.1+0.1
print(abs(a - b) < 1le-10)

Vidime, Ze a je pfiblizné rovno b jestlize je absolutni hodnota jejich rozdilu
mensi neZ uréita tolerance. Zde je tolerance 107'°. Absolutni hodnoté rozdilu
¢isel a,b budeme fikat vzddlenost c¢isel a,b. Proto mizeme ¥ici, Ze vzdélenost
¢isel a, b je mensi nez tolerance.

Jak nas poucuje piedchozi ¢ast, méli bychom pro toleranci vytvofit kon-
stantu.

a=20
b = 0.

PRECISSION = 1le-10
print(abs(a - b) < PRECISSION)

Pro rizné programy mtze byt samoziejmé tolerance rizné. Jind bude u
programu stroje operujici lidské srdce a jina u tachometru kola.

Interpret pouziva pro préci s desetinnymi ¢isly format ¢isel s plovouci dese-
tinnou ¢arkou. Tento format se sklada ze t¥i ¢asti: znaménka, platnych ¢islic a
exponentu. O omezeni poc¢tu platnych ¢islic jsme si jiz fekli. Zbyva dodat, ze i
exponent je omezen. Proto existuje nejvétsi desetinné &islo

1.7976931348623157e+308

a nejmensi kladné desetinné ¢islo
5e-324.

Existence nejvétsiho desetinného éisla vede k tomu, Ze pokud by operace
méla vratit ¢islo vetsi nez nejvétsi mozné, tak se vrati nekoneno nebo dojde k
chybé.

>>> 1e308 * 2

inf

>>> 2.0 ** 10000

OverflowError: (34, 'Result too large')

Stoji za zminku, Ze cela ¢isla horni omezeni velikosti teoreticky nemaji.

>>> 2 ** 10000
1995063116880758384. ..

Pokud by vysledek byl blize nule nez nejmensi kladné desetinné ¢islo, pro-
padne se tento vysledek na nulu.

49

>>> 5e-324 / 2
0.0

>>> (-5e-324) / 2
-0.0

Poznamenejme, ze mame zapornou a kladnou nulu.
Pfi pocitani s nekone¢nem muZzeme narazit na zvlastni hodnotu nan.

>>> inf = 1e+308 * 2
>>> inf / inf
nan

Hodnota nan je zkratka za Not A Number a je hodnotou neuréitych vyrazu.
Jako naptiklad oco/oo. Ozna¢me si hodnotu nan.

>>> nan = inf / inf
Vysledky operaci, kde aspon jeden z operandi je nan, jsou opét nan.

>>> nan + 1
nan

>>> nan * nan
nan

Hodnota nan se nerovna ni¢emu dokonce ani sama sobé.

>>> nan == 1
False

>>> nan == nan
False

Priblizné vypocty s desetinnymi ¢isly maji za dusledek to, ze pokud bude
sCitanec a o mnoho Ffada vétsi nez séitanec b, pak muze byt soucet a a b roven
a. Napriklad

>>> 10e20 + 1 == 10e20
True

Podobné problémy nastavaji i u ostatnich aritmetickych operaci.
Nésleduji ukoly na procviceni prace s desetinnymi &isly.

Ukol 6.1. Piiblizné pieved'te teplotu zadanou jako celé nebo desetinné &slo ve
stupnich Fahrenheita na stupné Celsia podle vztahu

5(f —32)
c= 5 ,
kde f je teplota ve stupnich Fahrenheita a ¢ ve stupnich Celsia. Vyslednou
hodnotu uvedte jako desetinné &islo.

50

Ukol 6.2. Pouzijte vztah zadany v predchozim tkolu a napiste program pie-

vadéjici teplotu zadanou ve stupnich Celsia na stupné Fahrenheita.

Ukol 6.3. Vytisknéte prvnich n ¢lenit Fibonacciho posloupnosti. Prvni ¢len
je roven nule, druhy jedné a kazdy dalsi je roven souctu dvou piedchozich.
Posloupnost tedy za¢ina 0,1,1,2,3,5,8, ...

Ukol 6.4. Pro dané piirozené &islo n > 1 vypoditejte piibliznou hodnotu zla-

tého Tfezu rovnou poméru
Qn

bl
Qp—1

kde a; je i-ty ¢len Fibonacciho posloupnosti.

Ukol 6.5. Je dana piesnost d, feknéme 10719, Piedchozi program nam déava
posloupnost stale se zlepSujicich odhadu zlatého fezu. Upravte jej tak, aby vy-
pocet skonéil ve chvili, kdy se sousedni ¢leny odhadu zlatého fezu budou ligit o
méné nez d.

Ukol 6.6. Pro dané pFirozené &islo n vrafte soucet

! + L + ! + : +- 1+ .

1 2 3 4 n’
Ukol 6.7. Pro dané piirozené &slo k vratte n takové, Ze soucet z predchoziho
ikolu bude vétsi nebo roven nez k. Teoreticky pro kazdé k takové n existuje,
prakticky vSak uz pro malé k tieba 15 je n veliké.

Ukol 6.8. Spocitejte pfibliznou hodnotu druhé odmocniny desetinného &isla a
pomoci Newtonovy metody. Za¢néte libovolnym odhadem xy. MuZete polozit
xg rovno a. Dale pocitejte prvky posloupnosti podle vztahu

1(Jra)
T =—\z —
k1 = 5 \ Tk .

Jako vysledek pro zadané n vratte prvek x,.

Ukol 6.9. Upravte piedchozi program tak, aby vypocet skonéil ve chvili, kdy
vzdélenost druhé mocniny odhadu a ¢isla a bude mensi nebo rovna nez zadané
d. Skoncete tedy ve chvili kdy

|22 —a| < d.

Ukol 6.10. Spocitejte priblizné hodnotu ¢&sla 7, kdyz vite, Ze ¢tvrtina 7 je
rovna

1 L + L1 +
3 5 7
Program bude brat pfirozené ¢islo n a do vypoc¢tu zahrnete jen n ¢lent

vypoctu.

Ukol 6.11. Upravte predchozi program tak, aby se vypocet zastavil ve chvili,
kdy vzdalenost dvou nasledujicich odhadi bude mensi nez zadané presnost.

o1

7 Sedmy seminar

7.1 Funkce

Zatnéme motiva¢nim piikladem. Vezméme si program, ktery pocita absolutni
hodnotu ¢isla.

num = -4

if num < 0:
num *= -1

print (num)

Pokud chceme program spustit s jinym vstupem, musime zménit hodnotu
proménné num. To je neSikovné zejména pro testovani. Program bychom radi
otestovali aspon pro kladnou hodnotu, zapornou hodnotu a nulu. To by zna-
menalo vzdy hodnotu zménit a program spustit. Chceme tedy nas kod vykonat
vicekrat s riznym vstupem. Za timto tcelem by bylo vhodné mit moznost si ¢ést
programu pojmenovat, ur¢it co jsou vstupni proménné a co je vystupni hodnota.
Pravé k tomu slouzi uzivatelské funkce, které si v této ¢asti predstavime.

Pripomenime si, Ze jiz umime funkce volat tak, Ze ur¢ime jméno funkce a
argumenty volani.

>>> len('abc')
3

>>> abs(-2)

2

>>> print(1l, 2)
12

Funkce urcuje pocet a typ svych argumentt. Napiiklad funkce len bere jeden
argument typu Fetézec. Volani funkce je vyraz a jako kazdy vyraz musi mit
hodnotu. Napfiklad volani len('abc') mé hodnotu 3. Této hodnoté rikame
navratova hodnota volan{ funkce. Rikdme takeé, Ze volani funkce vraci hodnotu.

Funkce, které mame k dispozici od startu programu, nazyvame vestavéné
funkce. Tedy napfiklad abs je vestavéna funkce.

Dosud jsme pouzivali pouze vestavéné funkce. Nyni si ukazeme, jak defi-
novat funkce vlastni (nazyvané uZivatelské funkce). Pokud je f jméno funkce,

P1y- .., Pn jsou nazvy proménnych a b blok prikazi, pak
def f(p1, ..., pPn):
b

je prikaz definujict uZivatelskou funkci. Prikaz definujici uzivatelskou funkci je
tedy sloZenym piikazem s jedinou klauzuli def. Proménnym p, ..., p, budeme
tikat parametry funkce a bloku b télo funkce. Piikaz se vykona tak, Ze definuje
(uzivatelskou) funkei f.

Napriklad

92

def print_sum(a, b):
print(a + b)

definuje uzivatelskou funkci print_sum, kterda ma dva parametry a, b.

Jména funkci nemiazou byt jména vestavénych funkci ani kli¢ova slova. Pi-
pomenme, ze klauzule slozenych piikazii zac¢inaji klicovym slovem. Napiiklad
if, def nebo for jsou klicova slova. Navic si musime dat pozor, aby jména
funkci byla rizna od jmen proménnych, které pouzivame.

Uzivatelskou funkci mazeme zavolat vyrazem volani funkce:

f(vly ceey vm)

Nejprve se ziskaji hodnoty hq ..., -, vyraza vi,...,v,,. Tim obdrzime m
argumentt volani. Déle se zkontroluje, zda pocet parametri n funkce f se rovna
podtu argumentt m. Pokud ne dojde k typové chybé (TypeError). Nyni vime, 7Ze
n = m. Nasledné se nastavi pozi¢né odpovidajici hodnoty parametra pq,...,pn
na argumenty hq, ..., h,. Nakonec se vykona télo funkce f.

Argumenty jsou tedy hodnoty, se kterymi funkci volame, a parametry jsou
nézvy proménnych, kterym se hodnoty nastavuji.

Napiiklad vyhodnoceni vyrazu

print_sum(l + 1, 2 + 2)

ziska hodnoty 2 a 4 vyrazia 1 + 1 a 2 + 2. ProtoZe funkce print_sum bere
dva parametry a my ji volame s dvéma argumenty, mtzeme pokracovat a nasta-
vit hodnotu proménné a na 2 a hodnotu proménné b na 4. Nakonec vykoname
télo funkce

print(a + b)

To bude mit za nésledek tisk &isla 6.
Spusténi programu ulozeného v souboru f z piikazové fadky piikazem

python3 -i f

prepne po vykonani programu interpret do interaktivniho rezimu.
Naptiklad pokud soubor print_sum.py obsahuje

def print_sum(a, b):
print(a + b)

muZete jej spustit python3 -i print_sum.py a testovat funkci:

>>> print_sum(2, 3)
5
>>> print_sum(1l, 0)
1

Pokud zadédme Spatny pocet argumentti, volani funkce skonéi chybou.

33

>>> print_sum(1)

TypeError: print_sum() missing 1 required positional argument: 'b'
>>> print_sum(1l, 1, 1)

TypeError: print_sum() takes 2 positional arguments but 3 were given

Navratova hodnota volani uzivatelské funkce je zatim prazdné hodnota None.
Névratovou hodnotu mizeme urcit néasledujicim piikazem. Je-li v vyraz, pak

return v

je prikaz ndvratu. Lze jej pouzit pouze v téle definice funkce. Slovo return je
nové klicové slovo. Prikaz se vykonéa tak, Ze se ukonéi vykonavani téla funkce a
vrati se hodnota vyrazu v. Tedy hodnota vyrazu v bude navratovou hodnotou
volani funkce.

Zavedeme si omezeni, Ze piikaz navratu musi byt poslednim piikazem, ktery
by télo funkce bez néj vykonalo. Napiiklad nasledujici definice omezeni porusuje.

def test(n):

if n == 0:

return 1
return 2

MiZeme ji ale upravit nasledovné:

def test(n):
if n == 0:
return 1
else:
return 2

Casto se budeme setkévat s definicemi funkei, které jsou tohoto tvaru:

def f(p1, ..., pn):
b

return v

Vratme se k na§emu piikladu programu poéitajiciho absolutni hodnotu. Pro-
gram muzeme vyjadrit funkei:

def my_abs (num):
if num < 0:
num *= -1
return num

Po nacteni programu mizeme testovat:

>>> my_abs(-1)
1
>>> my_abs(1)
1
>>> my_abs(0)
0

o4

Test mtizeme ucinit soucasti programu:

def my_abs (num):
if num < 0:
num *= -1
return num

print (my_abs (-1))
print (my_abs (1))
print (my_abs (0))

Vidime, Ze program se skladé ze dvou ¢asti. V prvni definujeme funkci, ktera
urcéuje pocet a jména parametrd, vypocet (t€lo funkee) a névratovou hodnotu.
V druhé ¢asti tuto funkci volame a tiskneme navratové hodnoty. Mizeme tedy
nas program zavolat vicekrat a zkontrolovat, zda se chova spravné.

Od tohoto okamziku budou naSe programy mit tuto formu. Nejprve tedy
bude uvedena definice funkce a pak priklady volani.

Zatim se omezime na definici pouze jedné funkce vyjadiujici nas program.
To nam zatim staci. K funkcim se ale budeme vracet v dal8ich seminéafrich.

7.2 Seznamy
Zacneme programem, ktery tiskne ¢isla od nuly do n.

def print_range(n):
for i in range(n):
print (i)

Program funguje tak, Ze ¢isla se tisknou na vystup:

>>> print_range(5)

B W N =R O

Tiskem sice posilame ¢isla na vystup, ale prichézime o né. Co kdyz ale chceme
tato Cisla postupné sbirat a dale s nimi pracovat? Za timto uc¢elem si zavedeme
novy typ hodnot seznam. Jak nazev napovida, seznam obsahuje hodnoty a urc¢uje
jejich poradi. Seznam se v mnohém podoba fetézci. Hlavnim rozdilem je, Ze
oproti Tetézci seznam miZze obsahovat libovolné hodnoty. Zatim se omezime
na seznamy, které obsahuji ¢isla. Seznam muzeme vytvorit nasledovné. Jsou-li
V1 ...,V, Vyrazy, pak

[Ul LI | /U'n,]
je vyraz popisugici seznam. Vyrazy vi,...,v, urcuji prvky seznamu. Hodnotou
vyrazu je seznam, jehoz prvky jsou hodnot vyrazu v ..., v,. Oproti mnoziné

seznamy urcuji poradi svych prvki a navic prvky muzou opakovat.

99

Priklady seznamil néasleduji.

>>> [0, 1, 2, 3, 4]

[o, 1, 2, 3, 4]

>>> [1 + 1, 2 * 3]

[2, 6]

>> [1, 2 -1, 1 + 1, 2 // 2]
[1, 1, 2, 1]

>>> []

(]

Posledni seznam je takzvany prdzdny seznam, ktery neobsahuje zadny prvek.

Seznam podobné jako Fetézec ma svoji délku a prvky seznamu se nachazeji
na urc¢itém indexu. Napfiklad [4, 2, 7] je seznam délky tfi a na indexu nula
se naléza prvek 4, na indexu jedna prvek 2 a na indexu dva prvek 7. Prazdny
seznam mé nulovou délku.

Operator + slouzi také ke spojovani seznamu.

>>> [1] + [2]

[1, 2]

>>> 11 = [2, 3]
>>> 12 = [4]

>>> 11 + 12

[2, 3, 4]

>>> 11 = 11 + [4]
>>> 11

[2, 3, 4]

Poznamenejme, ze piikaz
p+=0

neni pro seznamy ekvivalentni piikazu

p=p+twv

Jak nasledujici kod ukazuje, piikaz += ma z naSeho pohledu zvlastni chovani
a proto jej zatim nebudeme pouzivat.

>>> 11 = [1, 2]
>>> 12 = 11

>>> 11 += [3]
>>> 11

[1, 2, 3]

>>> 12

[1, 2, 3]

Pfesnéji neni jasné, pro¢ se zménou hodnoty proménné 11 zmeénila i hodnota
proménné 12. Nasledujici chovani je jiz v poradku:

96

>>> 11
>>> 12
>>> 11
>>> 11
[1, 2, 3]
>>> 12

[1, 2]

(1, 2]
11
11 + [3]

Nyni jiz mizeme nas ivodni program piepsat tak, aby vracel seznam nezé-
pornych &isel mensich nez n.

def list_range(n):
result_list = []
for i in range(n):
result_list = result_list + [i]
return result_list

V interaktivnim rezimu dostavame

>>> list_range(5)
o, 1, 2, 3, 4]

Neprekvapi nas, ze funkce len a indexa¢ni operator funguji také se seznamy.

>>1=[3, 2, 1]
>>> len(1l)

3

>>> len([4, 4])
2

>>> 1[0]

3

>>> [1, 2, 3]1[0]
1

>>> [1][0]

1

Muzeme napsat funkci, ktera se¢te hodnoty vsech prvki seznamu. Vstupni
proménnou bychom nejradéji pojmenovali 1ist. To ale nemuzeme, protoze 1list
je jméno vestavéné funkce.

def list_sum(input_list):

result = 0
for i in range(len(input_list)):
item = input_list[i]

result += item
return result

Mame napftiklad:

57

>>> list_sum([1, 2, 3])
6

Soucet prvka prazdného seznamu nam vychézi roven nule:

>>> list_sum([])
0

Dva seznamy se rovnaji, kdyz maji stejnou délku a prvky na odpovidajicich si
indexech se rovnaji. K porovnavini seznamii mizeme vyuzit operatory rovnosti
a nerovnosti. Dostavame

>>> [1, 2, 3] == [1, 2, 3]
True

>>> [1, 2, 3] '= [1, 3, 2]
True

>>> [1, 1] == [1]

False

>>> [1 == []

True

7.3 Ukoly

Ukol 7.1. Napiste funkci, ktera pro n vraci seznam prvnich n prvki Fibonna-
ciho posloupnosti. Pro definici se podivejte na tikol

Ukol 7.2. Uméli byste predchozi kol napsat tak, aby se pii vypoctu pouzivaly
posledni dva prvky tvofeného seznamu?

Ukol 7.3. Napiste funkei, ktera pro dany seznam &isel spocita produkt jeho
prvka. Produkt ziskate tak, ze vynasobite vSechny prvky seznamu. Co by méla
funkce vratit pro prazdny seznam?

Ukol 7.4. Napiste funkci reverse, ktera pro seznam s vrati seznam jehoz prvky
budou prvky seznamu s v opa¢ném pofadi. Tedy

>>> reverse([2, 3, 4])
[4, 3, 2]

Ukol 7.5. Naprogramujte funkci sublist, ktera bere seznam s a indexy i fa
1¢. Funkce vrati podseznam seznamu s obsahujici prvky, jejichz index je vétsi
nebo rovno nez iy a mensi nez i;. Napiiklad

>>> sublist([5, 4, 3, 2, 1], 0, 3)
[5, 4, 3]

Co funkce vrati, kdyz i, < iy?

Ukol 7.6. Bez pouziti operatorii == a != na porovnavani seznamu napiste
funkci, ktera rozhodne, zda jsou dva seznamy rovny.

98

Ukol 7.7. Napiste funkei, ktera rozhodne, zda je hodnota prvkem seznamu.

Ukol 7.8. Napiste funkeci, ktera odstrani viechny vyskyty zadané hodnoty ze
seznamu.

Ukol 7.9. Upravte predchozi funkci tak, aby odstranila pouze prvni vyskyt
hodnoty.

Ukol 7.10. Napiste funkci, ktera zjisti, zda je seznam uspofadany od nejmen-
gich hodnot k nejvétsim.

Ukol 7.11. Rozhodnéte, zda jeden seznam zaéina prvky druhého seznamu.

Ukol 7.12. Odstraiite ze seznamu vSechny prvky, které jsou délitelné zadanym
Cislem.

Ukol 7.13. Za pouziti Eratosthenova sita vratte viechna prvoéisla mensi nebo
rovno nez dané n. Eratostenovo sito je algoritmus, ktery probiha tak, ze za¢nete
se seznamem s Cisel od dvou do n. Poté opakujete nasledujici. Prvni prvek
seznamu s je prvocislo a muzete jej pridat na vystup. Odstraite ze seznamu
s v8echny prvky, které jsou délitelné ¢islem a. Opakovani ukondcete, az bude
seznam s prazdny.

8 Osmy seminar

8.1 Rozdéleni programu do funkci

Pojdme naprogramovat funkei odstranujici duplicity ze zadaného seznamu. Funkci
pojmenujeme remove_duplicates a méla by fungovat nasledovné.

>>> remove_duplicates([1, 2, 1, 2, 2])
[1, 2]

>>> remove_duplicates ([])

[]

>>> remove_duplicates([1l, 2, 3]1)

[r, 2, 3]

Odstranovani duplicit budeme provadét tak, Ze do proménné Feknéme result
budeme pridavat jen ty prvky vstupniho seznamu, které se v ni jesté nenalézaji.
Proménnou, jejiz hodnotu vracime budeme nazyvat vystupni. Zacneme kostrou
programu.

def remove_duplicates(input_list):
result = []
#
return result

Ptidame prochazeni prvki seznamu input_list:

99

0O Ui Wi

def remove_duplicates(input_list):
result = []
for i in range(len(input_list)):
element = input_list[i]
is_member = False
.
if not is_member:
result = result + [element]
return result

Zbyva dodat test, zda je aktualni prvek element pfitomen v seznamu result

def remove_duplicates(input_list):
result = []
for i in range(len(input_list)):
element = input_list[i]
is_member = False
for j in range(len(result)):
list_element = result[j]
if list_element == element:
is_member = True
break
if not is_member:
result = result + [element]
return result

Iterace na fadku 3 postupné prochazi prvky vstupniho seznamu. Iterace na
rfadku 6 kontroluje, zda je aktudlni prvek pfitomen ve vysledku. Pokud neni,
vétveni na Ffadku 11 aktuélni prvek prida k vysledku.

Po chvilkové tvaze zjistime, ze fadky 5 az 10 zjistuji, zda je prvek piitomny
v seznamu. Nevyhodou naseho FeSeni je, Ze tato skute¢nost neni na prvni pohled
ziejma. Chtéli bychom tuto ¢ast kodu pojmenovat a jiz vime, ze za timto tcelem
méame pouzit uzivatelské funkce:
def is_element_member (element, input_list):

is_member = False
for i in range(len(input_list)):

list_element = input_list[i]
if list_element == element:
is_member = True
break

return is_member
Funkci bychom méli otestovat:

>>> 1is_element_member (1, [1, 2, 1, 4])
True
>>> is_element_member (5, [1, 2, 1, 4])
False

60

© 00~ O Uk Wi+

>>> is_element_member (5, [])
False
>>> is_element_member (5, [5])
True

Nyni jiz miZeme nahradit ve funkci remove_duplicates problematicky kod
volanim funkce:

def is_element_member (element, input_list):
is_member = False
for i in range(len(input_list)):

list_element = input_list[i]
if list_element == element:
is_member = True
break

return is_member

def remove_duplicates(input_list):
result = []
for i in range(len(input_list)):

element = input_list[i]
if not is_element_member (element, result):
result = result + [element]

return result

Podafilo se nam kod programu ucinit pfehlednéjsi tim, ze jsme jej rozdélili
do vice funkci.

Jak je mozné, Ze pii volani funkce is_element_member nepiijdeme o hod-
notu proménné input_list funkce remove_duplicates, kdyZ prvné jmenované
funkce mé parametr také pojmenovany input_list?

P1i volani funkce se nejprve vytvori nové prostiedi. Nazyvame jej lokdlni
prostredi. Pfipomenime, Ze prostfedi je tabulka, kterd pfifazuje proménnym je-
jich hodnoty. Hodnoty parametra funkce se nastavuji na argumenty v lokalnim
prostiedi a télo funkce se v tomto lokalnim prostiedi vykonava. Lokalni pro-
stfedi jsou pri¢inou, pro¢ zména hodnoty proménné neovlivni hodnotu stejné
pojmenované proménné mimo télo funkce.

Ukazeme si priklad.

def f1(b):
b=Db + 1
return b

def f2(b):
£f1(b)

return b

print (£2(2))

61

Co program vytiskne? Rozebereme si jeho vykonani. Piikazy na fadcich 1 a
5 pouze definuji funkce. Samotny program se spusti vyhodnocenim vyrazu

£2(2)

Vytvori se prvni lokalni prostfedi a v ném se nastavi hodnota proménné b
na 2:

[b[2]

Do lokalniho prostfedi lze nahlédnout zastavenim vykonavani na radku 5.
Lokalni prostiedi je zobrazené vlevo v ¢asti Locals.

@ [] example_function_4.py — seminar_8
@ RUN [> Python: CurrentFile v £53 &) o s> 2 Y T O 0O > @
' VARIABLES @ example_function_4.py > @ f2
/C) Vv Locals 1 def f1(b):
b: 2 2 b=b+1
3 return b
> Globals
4
% 5 def f2(b):
© 6 f1(b)
7 return b
v WATCH 8
9 print(f2(2))
@ 10
11

Dale dojde k volani funkce £1:
£1(b)

To vytvori druhé lokalni prostiedi také s hodnotou 2.

[] ® example_function_4.py — seminar_8
RUN [> Python: CurrentFile v £ &) - s> 2 Y T O 0O > O
\/ VARIABLES @ example_function_4.py > @ f1
/C) Vv Locals 1 def fi(b):
o 2 o 2 b=b+1
3 return b
> Globals 4
& 5 def f2(b):
6 f1(b)
7 return b
v WATCH 8
9 print(f2(2))
® 10

&3

Dalsi prikaz zméni hodnotu proménné b v aktualnim druhém lokalnim pro-
stredi:

62

ST W N

[] ® example_function_4.py — seminar_8
@ RUN [> Python: CurrentFile v 6% & - H > F ¢ @ 2 (O > M
' VARIABLES @ example_function_4.py > @ f1
p \ Locals 1 def f1(b):
b: B e 2 b=b+1
3 return b
> Globals "
% 5 def f2(b):
6 f1(b)
7 return b
\ WATCH 8
9 print(f2(2))
® 10
11

Nésleduje névrat z volani funkce f1 do volani funkce f2 a zde prestava
platit druhé lokalni prostfedi. Prvni lokalni prostedi je nyni aktudlni a v ném
je hodnota b stéle 2.

® ® example_function_4.py — seminar_8
@ RUN [> Python: CurrentFile v &% & - & > 2 ¥ T © 0O > @
V' VARIABLES @ example_function_4.py > @ f2
p ¥ Locals 1 def f1(b):
b: 2 o 2 b=b+1
3 return b
(return) f1: 3 2
a’b > Globals 5 def f2(b):
6 f1(b)
7 return b
~ WATCH 8
9 print(f2(2))
® 10

3

Dvojku tedy volani funkce £2 vrati a proto program vytiskl ¢islo dva.

Druhou moZnosti, jak se na volani uzivatelskych funkci divat, je si zavést
pojem rozsah proménné. Rozsah proménné je ¢ast kodu, kde se miizeme dota-
zat na jeji hodnotu. Rikéme, Ze proménna je platnd ve svém rozsahu. O prvnim
prifazeni hodnoty do proménné v téle funkce fikdme, Ze tuto proménnou defi-
nuje. To plati pouze, pokud proménna neni parametrem. Vezméme si napiiklad
nésledujici program.

def f1l(a):

b =2
a =a+ 1
b=a+bo

print(a + b)

63

7

T W N -

© 00~ O Tk W

£1(3)

Zde tadek dva definuje proménnou b. Radek tii proménnou a nedefinuje,
protoZe a je parametrem funkce. Ani fadek &ty¥i nedefinuje proménnou - ta je
jiz definovana.

Parametry funkce a proménné definované v jejim téle jsou nazyvany lokdlni
promeénné funkce. Tedy predchozi funkce mé lokalni proménné a, b.

Rozsahem lokalnich proménnych funkce je celé télo funkce. Napiiklad v pro-
gramu
def f1(a):

b =2

print(a + b)

£1(3)

jsou rozsahem parametru a i proménné b fadky dva a tfi. Proto pfi vyhod-
noceni vyrazu print(a + b) bude hodnota proménné a t¥i (argument funkce)
a hodnota proménné b dva. Spusténi programu

def f10):
print (a)
a = 2
£f10
skon¢i chybou
UnboundLocalError: local variable 'a' referenced before assignment.

Rozsahem proménné a je sice celé télo funkce £1, ale na fadku dva jesté pro-
ménna nema hodnotu. Vsimnéte si rozdilu s chybou v programu:

def f10):
print (a)

10

Zde program kon¢i nadm znamou chybou
NameError: name 'a' is not defined.

Vratime se k prikladu s funkcemi f1 a £2:

def f1(b):
b=Db + 1
return b

def f2(b):
f1(b)

return b

print (£2(2))

64

00 O Uik Wi

0O Uik Wi

MiuZeme jej nyni vysvétlit s pomoci rozsahi proménnych. Parametr b funkce
£1 splyva s proménnou b definovanou na fadku dva. Muzeme tedy ¥ici, ze fadek
dva pouze méni proménnou b. Pfipomenme, Ze parametr funkce je proménné.
Rozsah proménné b jsou radky 2, 3.

Rozsah parametru b funkce £2 jsou Fadky 6, 7. Prinik rozsahi parametru b
funkce £1 a rozsahu parametru b funkce £2 je prazdny. Muzeme si tedy predsta-
vit, Ze se jednéd o dvé rtizné proménné stejného jména. Pfejmenovani proménné
jen v jedné funkci nijak neovlivni funkci druhou.

Zmeéna proménné b na fadku dva neovlivni hodnotu proménné b v téle funkce
£2. Ziskani hodnoty proménné b na fadku sedm je mimo rozsah proménné b v
téle funkce £1.

Nyni by jiz mélo byt jasné, pro¢ néasledujici program skonéi chybou:

NameError: name 'b' is not defined.

def f1():
b =2

def f2(0):
f10
print (b)

print (£20))

Proménna b definovana na druhém radku ma rozsah pouze fadek dva. Na-
proti tomu proménna b na fadku Sest neni ani parametrem ani neni v téle funkce
£2 definovana.

Vysvétlete, pro¢ i néasledujici program koné¢i chybou:

NameError: name 'a' is not defined.

def f1(0):
print (a)

def f20):
a = 2
f10

20

Vime, Ze po spustén{ programu existuje prostiedi, které uréuje hodnoty pro-
ménnych. Tomuto prostiedi fikame globdini prostredi. Pokud se hodnota pro-
ménné nenajde v lokadlnim prostfedi, hleda se jeji hodnota v globalnim prostiedi.

Proménnou, jejiz hodnotu ménime mimo definice funkci, nazyvame globdlni.
O prvnim pfifazeni hodnoty do globalni proménné fikime, Ze proménnou de-
finuje. Rozsahem globalni proménné je ¢ast kodu nalézajici se za jeji definici.

65

© 00 O Tk Wi+

Pokud by v néjaké ¢asti programu byla platna jak lokalni tak globélni proménné
stejného jména, ma prednost lokalni proménna.
Podivejme se na nasledujici program.

cl =1

def f1(0):
cl =0
print(c1)

print(cl)
f10
print(cl)

Méame zde globalni proménnou cl jejiz rozsah jsou radky dva a dale. Déle
se zde nachézi lokalni proménné c1, kterd ma rozsah radky ¢tyfi a pét. Zména
proménné cl na radce ¢tyti tedy zméni jen lokalni proménnou. Hodnota globalni
proménné zustane stejna. Proto program vytiskne:

1
0
1

7 globalniho prostiedi si v télech funkei dovolime pouzivat pouze konstanty.

8.2 Seznamy rtznych hodnot

Dosud jsme pracovali pouze se seznamy jejichZz prvky byly cela ¢isla. Nic ndm
nebrani udélat seznam z libovolnych hodnot. Muzeme tedy vytvofit seznam
fetézcl:
['jedna', 'dvé', 't¥i']
pravdivostnich hodnot:
[True, False, True]
nebo desetinnych ¢isel:
[0.1, 12.4, 1le-20]

Dokonce muzeme i vytvorit seznam, kde kazdy prvek je jiného typu:
['Hra¢ jedna', 45, True]

Jelikoz seznam je také hodnota, muze byt i on prvkem jiného seznamu.

>> 1= [[1, 2, 3], [4, 5, 6], [7, 8, 9]1]
>>>

>>> 1[0]

[1, 2, 3]

>>> 1[0][1]

2

66

Vsimnéte si dvojnésobného pouziti indexa¢niho operatory v poslednim pfi-
kladé. Seznam 1 by mohl reprezentovat nasledujici matici ¢isel.

N &~ =
oo Ot N
O O W

NapiSeme program tisknouci matici (bez obklopujicich zavorek).

def print_cell(element, is_last):
print (element, end='")
if not is_last:
print('.', end="'")

def print_row(row):
for j in range(len(row)):

element = row[j]

is_last = j == len(row) - 1

print_cell (element, is_last)
print O

def print_matrix(matrix):
for i in range(len(matrix)):
row = matrix[i]
print_row(row)

Zkouska:

>>> print_matrix([[1, 2, 3], [4, 5, 6]]1)
1 2 3
4 56

8.3 Ukoly

Ukol 8.1. Pro Fetézec obsahujici slova oddélena mezerou vratte seznam téchto
slov.

Ukol 8.2. Rozhodnéte, zda je jeden seznam podseznamem druhého.

Ukol 8.3. Transponujte zadanou matici. Transponovana matice vznikne zamé-
nou fadku a sloupci. Napiiklad transpozici matice

1 2 3
4 5 6

vznikne matice

W N =
D O

67

Ukol 8.4. Vytvoite jednotkovou matici zadané velikosti. Jednotkova matice ma
na hlavni diagonéle jedni¢ky a jinde nuly. Napiiklad jednotkova matice velikosti
t¥i vypadé takto:

1 00
01 0
0 01

Ukol 8.5. Je dan seznam &isel [a piirozené &islo n. Vytvoite seznam délky
n, kde prvek na indexu 7 je seznam obsahujici vSechna ¢isla z [jejichz zbytek
po déleni ¢islem n je i. Napiiklad pro seznam [1, 2, 3, 3, 8, 5, 4] ¢islo 3
vratte [[3, 31, [1, 4], [2, 8, 5]1.

Ukol 8.6. Vytvoite pocatetni stav Sachovnice u hry Geskd dama. Sachovnici
osm krat osm reprezentujte jako seznam radki, kde fadek je seznam poli. Nulou
oznacte prazdné pole, jednickou bily kimen a dvojkou ¢erny kamen.

Ukol 8.7. Napiste funkei, ktera vytiskne achovnici. Prazdna pole tisknéte zna-
kem tecka, bily kdmen pismenem malé o, ¢erny kdmen hvézdickou. Za znakem
pole nechéavejte mezeru. Dopliite z obou stran ¢isla fadki a pismen sloupcii.
Tedy pocatecni pozice ¢eské damy se vytiskne takto:

abcdefgh
.0.0.0.0

* * *

=N W TN
= N Wdh 1o NN @

* * * *
abcdefgh
Ukol 8.8. Napiste funkci, ktera zméni zadané pole Sachovnice na danou hod-

notu.

Ukol 8.9. Umite piedchozi funkce pracujici s achovnici upravit tak, aby &lo
konstantou nastavit velikost Sachovnice? Napiiklad devét krat devét. Dale mu-
Zete konstantou uréit pocet fad obsazenych na zac¢atku kameny hrace. Pro Ces-
kou ddmu to jsou tfi rady.

Ukol 8.10. Rozdélte feseni tikolit (nesoudélna ¢isla) a (Pythagorejské
trojice) do funkei.

Ukol 8.11. Rozdélte vhodné feseni tikolu (Eratosthenovo sito) do funkci.

68

9 Devaty seminar
Opakovani: zlomky

def make_fract(num, den):

if den == 0:
return num // den
else:

return [num, den]
#print (make_fract(1l, 2))

def get_num(fract):
return fract[0]

print (get_num(make_fract(1l, 2)))

def get_den(fract):
return fract[1]

print (get_den(make_fract(l, 2)))

def print_fract(fract):
print ('make_fract(', end='")
print(get_num(fract), end=',_.")
print (get_den(fract), end='")
print(') ")

print_fract (make_fract (1, 2))

def are_fracts_equal (fractl, fract2):

numl = get_num(fractl)
denl = get_den(fractl)
num2 = get_num(fract2)
den2 = get_den(fract2)
return numl * den2 == num2 * denl

print (are_fracts_equal (make_fract(1l, 2),
print (are_fracts_equal (make_fract (1, 2),
print (are_fracts_equal (make_fract (1, 2),

def add_fracts(fractl, fract2):

numl = get_num(fractl)
denl = get_den(fractl)
num2 = get_num(fract2)

den2 = get_den(fract2)

69

make_fract (1,
make_fract (2,
make_fract (1,

2)))
4)))
4)))

num_result = numl * den2 + num2 * denl
den_result = denl * den2
return make_fract (num_result, den_result)

#print_fract (add_fracts (make_fract (1, 2), make_fract(l, 2)))
#print_fract (add_fracts (make_fract (1, 3), make_fract(l, 2)))

def mult_fracts(fractl, fract2):

numl = get_num(fractl)

denl get_den(fractl)

num2 get_num(fract2)

den2 = get_den(fract2)

num_result = numl * num2

den_result = denl * den2

return make_fract (num_result, den_result)

print_fract(mult_fracts (make_fract(l, 2), make_fract (2,

def compute_gcd(n, m):
while m != 0:
tmp = m
m=mn?%nmnm
n = tmp
return n

print (compute_gcd (6, 8))
print (compute_gcd (10, 15))
print (compute_gcd (8, 9))

def reduce_fract(fract):

num = get_num(fract)
den = get_den(fract)
gcd = compute_gcd(num, den)

return make_fract(num // gcd, den // gcd)

print_fract(reduce_fract (make_fract(5, 10)))
def print_and_add_fracts(fractl, fract2):
print_fract(add_fracts(fractl, fract2))

fl = make_fract(1l, 2)

f2 = make_fract (2, 1)

mult_f = mult_fracts(fl, £f2)
red_f = reduce_fract(mult_f£f)
print_fract (red_f)

oW W W W

def add_inverse_fract(fract):

70

1))

T W N

num = get_num(fract)
den = get_den(fract)
return make_fract (-num, den)

f1 = make_fract (1, 2)
print_fract (add_fracts(fl , add_inverse_fract(f1)))

def sub_fracts(fractl, fract2):
return add_fracts(fractl, add_inverse_fract(fract2))

print_fract(sub_fracts (make_fract(l, 1), make_fract (1,

def mult_inverse_fract(fract):
num = get_num(fract)
den = get_den(fract)
return make_fract (den, num)

f1 = make_fract (1, 2)
print_fract(mult_fracts(fl , mult_inverse_fract(£f1)))

def div_fracts(fractl, fract2):
return mult_fracts(fractl, mult_inverse_fract(fract2))

print_fract(div_fracts (make_fract(l, 1), make_fract (1,

10 Desaty seminar

10.1 Rekurze

Jiz vime, Ze z téla uzivatelské funkce muizeme volat jinou uzivatelskou funkci.
To se napfiklad dé&je v nésledujicim programu poéitajicim soucet ¢tverci dvou
Cisel:

def square(x):
return x * x
def sum_of_squares(x, y):
return square(x) + square(y)
Funkce sum_of_squares pro ¢isla x a y spocita
z? +—y2.
Skutecné, pro x rovno 3 a y rovno 4 dostavame

>>> sum_of_squares (3, 4)
25

71

3)))

3)))

Pokud si na druhy fadek dédme zaradzku a spustime program pro ladéni,
miZeme se v levé dolni ¢asti pojmenované CALL STACK podivat na to, jaka téla
funkci se vykonavaji:

@ [] example_call_stack_1.py — seminar_10
@ RUN > Python: Current File v €5 &) - > 2 Y Y 9O 0 > M
v VARIABLES @ example_call_stack_1.py > @ square
p Vv Locals 1 def square(x):
s o D 2 return x *x X
3
» G 4 def sum_of_squares(x, y):
f% 5 return square(x) + square(y)
6
7 print(sum_of_squares(3, 4))
v WATCH 8
9
\ CALL STACK PAUSED ON BREAKPOINT
square example_call_stack_1.py @
sum_of_squares example_call_stack_1.py
® <module> example_call_stack_1.py @
> BREAKPOINTS

Prvni funkce square je aktuélné vykonavana funkce. Pod ni se naléza funkce
sum_of_squares, ktera funkci square volala. Kliknutim na sum_of_squares se
zvyrazni fadek, kde k volani doslo:

72

@ [} example_call_stack_1.py — seminar_10
@ RUN > Pythonm: CurrentFile v &% & - & > 2 ¢ T 9© [0 >
v VARIABLES @ example_call_stack 1.py > @ sum_of _squares
p v Locals 1 def square(x):
X 3 o 2 return x x x
3
y: 4
4 def sum_of_squares(x, y):
% > Globals 5 | return square(x) + square(y)
6
7 print(sum_of_squares(3, 4))
\ WATCH 8
9
v CALL STACK PAUSED ON BREAKPOINT
square example_call_stack_1.py @
sum_of_squares example_call_stack_1.py
@ <module> example_call_stack_1.py @
> BREAKPOINTS

Tedy funkce sum_of_squares voléa funkci square.

Abychom lépe vidéli, co se pii vykonavéani odehréavéa, doplnime si do funkci
tisk hlasek. Jednu hlasku vytiskneme pfed provedenim vypoctu a druhou tésné
pfed vracenim hodnoty.

def square(x):
print('Calling.square_with', x)
result = x * Xx
print ('Result_of.calling.square_with', x, 'is', result)
return result

def sum_of_squares(x, y):
print('Calling.sum_of_squares.with', x, 'and', vy)
result = square(x) + square(y)
print ('Result_of_.calling.sum_of_squares.with', x, 'and', vy,
'is', result)
return result

Hlasky po zavolani funkce vypadaji nasledovné.

>>> sum_of_squares(3, 4)

Calling sum_of_squares with 3 and 4
Calling square with 3

Result of calling square with 3 is 9
Calling square with 4

73

Result of calling square with 4 is 16
Result of calling sum_of_squares with 3 and 4 is 25
25

Vidime, jak se dvakrat pri volani funkce sum_of_squares volala funkce
square. Volani uZivatelské funkce pii vykonéavani uzivatelské funkce se nazyva
zanofené. Mizeme také mluvit o drovni zanoteni. Volani uzivatelské funkce
z globalniho prostfedi ma turoven zanofeni jedna. Volani uzivatelské funkce v
ramci vykonavani téla uzivatelské funkce ma o jedna vétsi troven nez jeji vo-
lani. Napiiklad volani square v ramci sum_of_squares pii vyhodnoceni vyrazu
sum_of_squares(3, 4) ma uroven zanoteni dva. Jisté si dokazete predstavit
program, jehoZ vykonévani by probfhalo v Grovni zanofeni tii.

Zdtraznéme, ze Groven zanofeni je vlastnost stavu interpretu pii vykonavani
programu. Pfi vykonavani programu se tedy aroven zanofeni méni.

Podivejme se na dalsi piiklad. Predpoklddejme na chvili, Zze chceme seéist
dvé nezaporna cela ¢isla, ale umime pouze pricist jednicku nebo odeéist jednicku
od kladného ¢&isla. Tedy chceme napsat funkci add, ktera bude brat dveé &isla jako
argumenty a vracet jejich soucet. Napiiklad

>>> add (2, 3)

5
>>> add(l, 5)
6
>>> add (6, 0)
6

V&imnéte si, Ze pokud je druhy argument nula, maze funkce rovnou vratit prvni
¢islo. V opa¢ném piipadé mizeme k prvnimu ¢éislu pfic¢ist jednicku, od druhého
jednicku odecist (tim nezménime hodnotu souctu) a cely proces opakovat. Vy-

jadfeno prostiedky, které mame k dispozici, dostavame:

def add(n, m):

while m != 0:
n += 1
m -= 1
return n

Secteni dvou ¢isel, kde druhé je veliké, muze chvili trvat. Zkuste napiiklad
vyhodnotit add(1l, 10%*7). Pokud by druhy argument byl zaporny, vypocet
neskon¢i nikdy. Tedy vyhodnocovani vyrazu add(1l, -1) bude probihat do ne-
konecna.

KdyZ bychom ale slepé prepsali vySe popsany proces séitani, tak fraze ,a
cely proces opakovat® znamena zavolani funkce add, a obdrzime:

def add(n, m):
if m == 0:
return n
else:
return add(n + 1, m - 1)

74

CO O UL W N

Zde je podezielé, ze funkci add volame v jeji definici. Z pohledu vykonavani to
v8ak problém neni, protoZe piikaz definice funkce add pouze vytvoii uzivatelskou
funkci add. V momenté zavolani funkce add napiiklad piikazem add(2, 2) jiz
je funkce add k dispozici a mize tedy byt zavolana z téla funkce jako kazda jina
funkece.

Aby jsme si udélali lepsi predstavu o tom, jak funkce add funguje, piidame
si do jejiho téla tisk argumentt a navratové hodnoty:

def add(n, m):
print('Calling.add.with', n, 'and', m)
if m == 0:
result = n
else:
result = add(n + 1, m - 1)
print ('Result_of.calling.add_with', n, 'and', m, 'is'
return result

Nyni vyhodnoceni vyrazu add(2, 2) vytiskne

Calling add with 2 and 2
Calling add with 3 and 1
Calling add with 4 and 0
Result of calling add with 4 and 0 is 4
Result of calling add with 3 and 1 is 4
Result of calling add with 2 and 2 is 4

Vidime, ze prvni dvé volani prosly pies else vétev a tim se spustilo zavolani
funkce add na 6. fadku. V tfetim volani bylo m rovno 0 a vykonala se tedy prvni
vétev, ktera rozhodla, ze vysledek bude ¢tyii. V tuto chvili probiha vykonévani
tfech volani funkce add. Tedy funkce add s argumenty 2 a 2 vola funkci add
s argumenty 3 a 1 a ta vola funkci add s argumenty 4 a 0. Na osmém Fadku
se vrati vysledek a skoné¢i posledni (tfeti) volani. Prvni a druhé volani pouze
vytisknou hlasku a predaji vraceny vysledek.

f{ikéme, ze funkce je rekurzivni, pokud ve svém téle volad samu sebe. Funkce
add je rekurzivni. O volani funkce v téle funkce fekneme, Ze se jedna o rekurzivnd
voldni, pokud se jedna o volani téze funkce v jejimz téle se volani nachéazi. Na
6. fadku se nalézé rekurzivn{ volani. (Volame funkci add v téle funkce add).

Dalsi moznost, jak ziskat predstavu o rekurzivnich voléni je projit si jednot-
liva rekurzivni volani v rezimu pro ladéni. V ¢asti CALL STACK vidime zanofeni
rekurzivnich volani.

75

result)

XX example_add_3.py — seminar.10
RUN D Python:CurrentFile v € & - = > 2 ¥ T © 0O > M -
 VARIABLES @ example_add_3.py > @ add
/O v Locals 1 def add(n, m):
n 0 2 | print('Calling add with', n, ‘and’, m)
. 3 if m==0:
" 4 result = n
ﬂ'B > Globals 5 else:
6 result = add(n + 1, m - 1)
7 print('Result of calling add with', n, 'and', m, 'is', result)
~ WATCH 8 return result
9
10 print(add(2, 2))
 CALL STACK PAUSED ON BREAKPOINT
add example_add_3.py €X)
add example_add_3.0y @@
add example_add_3.py @
<module> example_add_3.py @D L
> BREAKPOINTS

S rekurzi se poji novy druh chyb:

>>> add(1, 1000)
RecursionError: maximum recursion depth exceeded in comparison

Logicky je sice program v poradku, ale interpret Pythonu umoziiuje pouze
uroven zanoteni tisic. Ve skutecnosti je tato hodnota o par jednotek nizsi, pro-
toze sam interpret pro svoji ¢innost néjakou troven potiebuje. VSimnéte si, ze
volani funkce s druhym zapornym argumentem nyni nespadne do nekonecné
smycky, ale skonéi chybou:

>>> add(1l, -1)
RecursionError: maximum recursion depth exceeded in comparison

Interpret nepozna, zda se jedna o nekone¢nou smycku a nebo o piilis naro¢ny
vypocet.

Nékteré programy se pomoci rekurze vytvareji velice snadno. Vezméme si
priklad faktorialu.

n! =

1, pro n = 0;
n-(n—1)!, jinak.

Tradi¢ni definice by se neobesla bez cyklu:

def factorial(n):
result = 1
for i in range(n):

result *= i + 1
return result

Zkouska:

76

>>> factorial (5)
120

S pouzitim rekurze lze definici faktoridlu prepsat do programu piimocare:

def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)

Vypocet hodnoty faktoridlu podle matematické definice se nyni podoba vy-
poctu provadéném programem. UkaZeme si to na pfikladu faktorialu t¥i. Podle
definice faktoridlu nejd¥ive dostavame

31=33-1)=321=32(2-1)!=32-11=3-2-1-(1-1)! = 3-2:1-0' = 3-2-1-1,
déle mame
3-2:1-1=3-2-1=3-2=6.
Pro zkoumani programu ptidame tisk hlasek:

def factorial(n):
print('Calling.factorial_.with', n)

if n == 0:
result =1
else:
result = n * factorial(n - 1)

print ('Result_of.calling.factorial_with', n, is', result)

return result
Vypocet faktoridlu vytiskne:

>>> factorial(3)

Calling factorial with 3

Calling factorial with 2

Calling factorial with 1

Calling factorial with 0

Result of calling factorial with 0 is 1
Result of calling factorial with 1 is 1
Result of calling factorial with 2 is 2
Result of calling factorial with 3 is 6

Prvni ¢ast odpovida vypoctu od 3! az po 3-2-1-1. Druha ¢ast pocita nasobeni
3-2-1-1. Navratova hodnota volani funkce se zde na rozdil od piredchoziho pii-
kladu méni. To je zptsobené tim, ze se pfed vracenim hodnoty provede vypocet
pouzivajici ndvratovou hodnotu rekurzivniho volani. Konkrétnéni na radce

return n * factorial(n - 1)

7

je navratova hodnota vysledek vynasobeni n a névratové hodnoty rekur-
zivniho volani. Pokud funkce pfimo vraci hodnotu rekurzivniho voléani, fikdme,
ze se jedné o koncovou rekurzi. VySe uvedena rekurzivni funkce add pouzivala
koncovou rekurzi. Dokazete ji pfepsat tak, aby se o koncové rekurzivni funkci ne-
jednalo? Oproti ni rekurzivni verze faktorialu koncové rekurzivni neni. Muzeme
ji ale prepsat tak, aby koncové rekurzivni byla:

def factorial_iter(n, result):
if n == 0:
return result
else:
return factorial_iter(n - 1, result * n)

def factorial(n):
return factorial_iter(n, 1)

Museli jsme ale zavést pomocnou funkci factorial_iter a pomocny argu-
ment result, kde se postupné sklada vysledek. Vlastné pomoci rekurze simulu-
jeme prvni verzi napsanou pomoci cykli. Pokud je funkce napsané jen pomoci
cykla bez rekurze, fikime, Ze je iterativni. Tedy simulujeme iterativni verzi po-
moci rekurze. Proto mé pomocna funkce nazev factorial_iter.

Dalsi kanonicky priklad na rekurzi je vypocet Fibonacciho posloupnosti.
Uved'me nejdfive feSeni pomoci cykli:

def fibonacci(n):

a =20

b =1

for i in range(n):
c=a+b
a=>,
b =c

return a

Funkce pocita (n + 1)-ty prvek Fibonacciho posloupnosti.

>>> print(fibonacci (10))
55

Zkusme se opfit o matematickou definici:
0, pro n = 0;

F(n)=1<1, pron = 1;
F(n—1)-F(n—2)!, jinak.

Vyjadfeno programem dostavame

def fibonacci(n):
if n == 0:
return 0
elif n == 1:

8

return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)

Program funguje korektné. Problém je, Ze jiz pro docela malé vstupy trva
vypocet prekvapivé dlouho. Zkuste si vyhodnotit fibonacci(45).

Program miiZeme sice piepsat tak, aby byl efektivnéjsi, ale tim ztratime
eleganci predchoziho FeSeni a vratime se v podstaté k pivodni verzi:

def fibonacci_iter(n, a, b):
if n == 0:
return a
else:
return fibonacci_iter(n - 1, b, a + b)

def fibonacci(n):
return fibonacci_iter(n, 0, 1)

10.2 Ukoly

Ukol 10.1. Pomoci rekurze vynéasobte dvé nezaporna cela ¢isla. NemuZzete po-
uzit operator nasobeni. Opfete se o néasledujici definici.

R pro m = 0;
T 04 (n- (m—1)), jinak

Ukol 10.2. Napiste piedchozi funkeci iterativng.
Ukol 10.3. Upravte piedchozi funkei tak, aby pouzivala koncovou rekurzi.

Ukol 10.4. Pomoci rekurze spocitejte m-tou mocninu ¢isla n. Cisla n a m jsou
cela nezaporna. NemiZete pouZit operator mocnéni (**).

Ukol 10.5. Co piedchozi funkce vrati jako vysledek 0°. Je to spravné?

Ukol 10.6. Zkuste ve vypoétu mocniny pouzit funkei nasobeni z prvniho tkolu.
Porovnejte moznosti velikosti druhého argumentu oproti predchozi verzi.

Ukol 10.7. Piepiste vypocet mocniny tak, aby byl koncové rekurzivni.
Ukol 10.8. Napiste iterativni vypocet mocniny.

Ukol 10.9. Umite spocitat mocninu pouze za pouZiti pii¢teni a odecteni jed-
ni¢ky? Tedy bez obecného s¢itani, od¢itani, nasobeni a samoziejmé mocniny.

79

11 JedenActy seminar

11.1 Podseznamy

Vezmeme-li seznam, napiiklad [1, 2, 3], miZeme indexovat mezery mezi prvky.
Mezera pred prvnim prvkem bude mit index nula, mezera mezi prvnim a dru-
hym prvkem bude mit index jedna, a tak dale. Délka seznamu bude indexem
mezery za poslednim prvkem.

Podseznam [5 seznamu /1 mtizeme ur¢it dvojici indexi mezer i a j seznamu
l1. Podseznam [» budou tvorit pravé ty prvky mezi mezerami i a j.

Jisté byste uméli napsat funkci sublist, ktera by brala seznam a dva indexy
mezer a vracela by jimi uréeny podseznam:

>>> sublist([1, 2, 3], 1, 3)

[2, 3]

>>> sublist([1, 2, 31, 0, 2)
[1, 2]

>>> sublist([1, 2, 3], 0, 0)
[]

Definice funkce by mohla vypadat nasledovné.

def sublist(input_list, index_from, index_to):
result = []

for i in range(index_to - index_from):
element = input_list[i + index_from]
result = result + [element]

return result

Podseznam seznamu lze ziskat jednodusSeji pomoci takzvanych fezi. Pokud

v, i a j jsou vyrazy, pak
vli:j]

je vgraz fezu (anglicky slice). Hodnota vyrazu v je seznam. Hodnoty vyrazii i a
J jsou indexy mezer seznamu v. Hodnotou vyrazu fezu je podseznam seznamu
v uréeny indexy ¢ a j. VySe uvedena volani funkce sublist lze pfepsat pomoci
fezl:
>> 1 = [1, 2, 3]
>>> 1[1:3]
(2, 3]
>>> 1[0:2]
(1, 2]
>>> 1[0:0]
(1]

Samoziejmé v ve vyrazu fezu miZe byt pfimo seznam:

>>> [1, 2, 3][1:3]
[2, 3]

80

Pokud prvni index ¢ ve vyrazu fezu vynechame, uvazuje se index nula. Pokud
vynechéne druhy index j uvazuje se délka seznamu v. Muzeme vynechat i oba
indexy. Naptiklad:

>>> 1 = [1, 2, 3]
>>> 1[:2]

[1, 21

>>> 1[1:]

[2, 3]

>>> 1[:]

[1, 2, 3]

11.2 Proménlivost seznamu

Predstavme si, ze chceme v seznamu nahradit prvek na indexu jinym prvkem.
Muzeme to provést nésledujici funkei:

def replace_element(input_list, index, element):

result_list = []
for i in range(len(input_list)):
if i == index:
result_element = element
else:
result_element = input_list[i]
result_list = result_list + [result_element]

return result_list
S pomoci fezii muzeme funkci napsat jednoduseji

def replace_element(input_list, index, element):
return input_list[:index] + [element] + input_list[index + 1:]

Vezmeme si seznam
>>> 11 = [1, 2, 3]
zavedeme si jinou proménnou s hodnotou 11:
>>> 12 = 11
pokud provedeme nahrazeni prvku:
>>> 11 = replace_element(ll, 1, 5)
Vidime, Ze se zménila jen hodnota 11:

>>> 11
[1, 5, 3]
>>> 12
[1, 2, 3]

Zmeénit prvek seznamu muZzeme i nasledujicim piikazem. Pokud [, ¢ a v jsou
vyrazy, pak

81

el =v

je prikaz zmény prvku seznamu. Hodnotou [je seznam, hodnotou 7 je index
prvku seznamu [/, hodnota v je libovolna. Piikaz zméni prvek seznamu [na
indexu ¢ na hodnotu v. P¥iklad volani:

>> 1 = [1, 2, 3]
>>> 1[1] = 5

>>> 1

[1, 5, 3]

Oproti pfedchozimu pfipadu dojde opravdu ke zméné prvku seznamu. Pied-
chozi pfipad vytvoril novy seznam, ktery mél jen jeden prvek jiny. Skutecné:

>>> 11 [1, 2, 3]
>>> 12 = 11

>>> 11[1] = 5

>>> 11

[1, 5, 3]

>>> 12

[1, 5, 3]

Narozdil od pfedchoziho piipadu, doslo i ke zméné seznamu 12. Ve skutec¢nosti
se zménil jen jeden seznam, ale hodnota proménné 11 je totozné s hodnotou
proménné 12. Jak porovnavat totoznost?

Pokud vy a v jsou vyrazy, pak

U1 is (%)

je vyraz porovndni totoZnosti. Totoznost nas zajima pouze u seznamu - ty
jediné umime ménit, proto budeme predpokladat, Ze hodnoty v1 a vy jsou se-
znamy. Hodnota vyrazu porovnani totoznosti je pravda, pokud seznamy vy a v
jsou totozné, jinak je hodnota nepravda.

Podivejme se na ptiklad:

>>> 11 [1, 2, 3]
>>> 12 = 11

>>> 13 = [1, 2, 3]
>>> 11 is 12

True

>>> 11 is 13

False

Vidime, Ze seznamy 11 a 13 nejsou totozné a to i presto, Ze jsou si vSechny
seznamy rovny:

>>> 11 == 12
True
>>> 12 == 13
True

82

Ve skutecnosti 11 a 12 jsou rizné nézvy pro tu samou hodnotu, 13 je jina
hodnota, kterd je pouze rovna (ekvivalentni) seznamtm 11 a 12. Proto zména
11 zméni i hodnotu 12 ale nezméni hodnotu 13:

>>> 11[1] =5
>>> 11

[1, 5, 3]

>>> 12

[1, 5, 3]

>>> 13

[1, 2, 3]

Pokud bychom chtéli hodnotu 11 zménit a neovlivnit hodnotu 12, musime
udélat kopii hodnoty 11. Toho Ize docilit naptiklad fezem:

>>> 11 = [1, 2, 3]
>>> 12 = 11[:]

>>> 11[1] = 5

>>> 11

[1, 5, 3]

>>> 12

[1, 2, 3]

Problém muze nastat, pokud hodnoty seznamu jsou zase seznamy:

11 [c1, 21, [3, 411
12 = 11[:]

11[01[0] =5

>>> 11

[[5, 21, [3, 411

>>> 12

Lls, 21, [3, 411

Vidime, ze kopie seznamu neni dostacujici. Ke kopii prvka seznamu nedoslo:

>>> 11 is 12

False

>>> 11[0] is 12[0]
True

Problém vyfresime funkci kopirujici i prvky seznamu:

def copy_matrix(matrix):
new_matrix = []
for i in range(len(matrix)):
row = matrix[i]
new_row = rowl[:]
new_matrix = new_matrix + [new_row]
return new_matrix

Test potvrdi dostate¢nost kopirovani:

83

>>> 11

(cr, 21, [3, 4]]

>>> 12 = copy_matrix(1l1)
>>> 11 == 12

True

>>> 11 is 12

False

>>> 11[0] is 12[0]
False

>>> 11[0][0] = 5
>>> 11

[[5, 21, [3, 411
>>> 12

(f1, 21, [3, 411

Moznost zmény seznamu umoziuje funkcim ménit své argumenty. Vezméme
si napfriklad funkci

def set_element(input_list, index, element):
input_list[index] = element

Potom méame:

>> 1 = [1, 2, 3]

>>> 1

[1, 2, 3]

>>> set_element(l, 1, 5)
>>> 1

[1, 5, 3]

Zavolani funkce zpusobilo zménu seznamu 1.
Podivejme se na kod, ktery piida prvek nakonec seznamu:

>>> 11 = [1, 2, 3]
>>> 12 = 11

>>> 11 = 11 + [4]
>>> 11

[1, 2, 3, 4]

>>> 12

[1, 2, 3]

Seznam 12 zistal bez zmény. Pro pfidani prvku si miZzeme napsat funkci:

def append_element (input_list, element):
return input_list + [element]

Zkouska:

>>> 11 = [1, 2, 3]

>>> 12 = 11

>>> 11 = append_element(l1l, 4)
>>> 11

84

(1, 2, 3, 4]
>>> 12
(1, 2, 3]

Zavedeme si novy piikaz ménici seznam. Pokud [je proménna, jejiz hodnota
je seznam, a v je vyraz, jehoz hodnota je seznam, pak

Il += v

je pfikaz priddni prvkid nakonec seznamu. Prikaz pridad prvky seznamu v
nakonec seznamu [. Dojde tedy ke zméné seznamu [. Test:

>>> 11 = [1, 2, 3]
>>> 12 = 11

>>> 11 += [4]

>>> 11

[1, 2, 3, 4]

>>> 12

[1, 2, 3, 4]

Tato verze funkce pfidani prvku nakonec seznamu tedy seznam méni:

def append_element (input_list, element):
input_list += [element]

Coz vidime zde:

>>> 11 = [1, 2, 3]

>>> 12 = 11

>>> append_element (l1l, 4)
>>> 11

[1, 2, 3, 4]

>>> 12

[1, 2, 3, 4]

11.3 Ukoly

Ukol 11.1. Napiste iterativné funkeci replace, ktera bere seznam [a dvé hod-
noty vy a ve. Funkce nahradi v seznamu [kazdy vyskyt hodnoty v, za hodnotu
vg9. Funkce nesmi zménit seznam [. Naptiklad:

>>> replace([1l, 2, 1, 3], 1, 5)
[5, 2, 5, 3]

Ukol 11.2. Prepiste piedchozi funkci tak, aby nic nevracela a pfimo ménila
seznam [. Napiiklad:

>> 1= [1, 2, 1, 3, 1]
>>> replace(l, 1, 5)
>>> 1

[5, 2, 5, 3, 5]

85

Ukol 11.3. Vyfeste prvni dva tkoly za pouziti rekurze.
Ukol 11.4. Jsou vase feden{ koncové rekurzivni?

Ukol 11.5. Dokéazete dvé predeslé rekurzivni verze upravit tak, aby kazdé re-
kurzivni volani zmensilo délku uvaZovaného seznamu na polovinu?

Ukol 11.6. Napiste funkci reverse, ktera prohodi prvky zadaného seznamu.
Funkce nic nevraci a pfimo méni seznam zadany jako argument.

Ukol 11.7. Piepiste piedchozi verzi tak, aby vracela seznam s prohozenymi
prvky a nemeénila sviij argument.

Ukol 11.8. Umite napsat verze reverse rekurzivné?

12 Dvanaicty seminar

12.1 Sekvence

Zacfneme funkci, kterd rozhodne, zda je hodnota prvkem seznamu.

def is_member (input_list, element):
result = False
for i in range(len(input_list)):
input_element = input_list[i]
if input_element == element:
result = True
return result

Dostavame:

>>> is_member ([1, 2, 3], 1)
True

>>> is_member ([1, 2, 3], 5)
False

Jaké pozadavky funkce klade na argument input_list? Musime byt schopni
ziskat délku argumentu pomoci vestavéné funkce len a zjistit hodnotu na indexu
indexa¢nim operatorem. To ale spliiuje nejen seznam, ale i fetézec. Funkce bude
zazratné fungovat i na fetézce:

>>> is_member ('abc', 'b')
True
>>> is_member ('abc', 'e')
False

Bylo by vhodné prejmenovat nékteré proménné funkce is_member tak, aby
nepouzivaly slovo 1list. Zavedeme si pojem sekvence. Sekvence je hodnota, kteréa
mé délku a je mozné ziskat hodnotu na indexu mensim, nez délka sekvence.
Hodnoté na indexu fikdme poloZka sekvence (anglicky item). Délku sekvence
vraci funkce len a hodnotu na indexu indexa¢ni operator. Seznamy i Fetézce
jsou sekvence:

86

>> 1 = [5, 2, 7]
>>> len(1l)

3

>>> 1[0]

5

>>> s = 'abc'

>>> len(s)

3

>>> s[1]

"

def is_member (sequence, item):
result = False
for i in range(len(sequence)):
sequence_item = sequencel[i]
if sequence_item == item:
result = True
break
return result

Funkce pfi nalezeni polozky v sekvenci nastavi proménnou result, prerusi
cyklus a vrati hodnotu result. Mohli bychom stejné dobfe rovnou vratit True.
Ve funkcich, kde dojde ke zvySeni ¢itelnosti, si dovolime vratit hodnotu i v misté,
které neni poslednim pfikazem funkce. Funkci is_member vyjadiime prehlednéji.

def is_member (sequence, item):
for i in range(len(sequence)):
sequence_item = sequencel[i]
if sequence_item == item:
return True
return False

Nasledujici funkce v sekvenci nahradi polozku na indexu zadanou poloZkou.

def replace(sequence, index, item):
sequence[index] = item

Funkce se spoléhé na to, ze lze ménit polozky sekvence. Vime, ze nékteré
sekvence nepiipousti zménu svych polozek. Proto funkce bude fungovat pro
seznamy, ale ne pro fetézce.

>>> sl = [1, 2, 3]
>>> replace(sl, 1, 5)

>>> sl

[1, 5, 3]

>>> s2 = 'abc'

>>> replace(s2, 1, 'd")

TypeError: 'str' object does not support item assignment

87

Zkusime funkci prepsat pomoci fezi:

def replace(sequence, index, item):
return sequence[:index] + [item] + sequence[index + 1:]

Predpokladame, ze fez by mél fungovat pro kazdou sekvenci, protoze vyza-
duje jen ziskani poloZky na indexu. Opravdu, fez pro fetézce funguje:

>>> s = 'abcd'
>>> s[1:]
"bed'

>>> s[2:3]

'c

Dale predpokladame, Ze sekvence muzeme spojovat. Funkce ale stale fetézce
nepripousti:

>>> sl = [1, 2, 3]

>>> sl = replace(sl, 1, 5)
>>> sl

[1, 5, 3]

>>> s2 = 'abc'

>>> s2 = replace(s2, 1, 'd")

TypeError: can only concatenate str (not "list") to str

Duvodem je, Ze Tez na Tetézci vrati fetézec a ten nemiizeme spojit se sezna-
mem. MiiZzeme spojovat pouze sekvence stejného typu. Zménime funkci tak, aby
misto polozky ocekavala dalsi sekvenci:

def replace(sequence, index, subsequence):
return sequence[:index] + subsequence + sequence[index + 1:]

Nyni jiz funkce funguje jak pro seznamy tak pro fetézce.

>>> sl = [1, 2, 3]

>>> sl = replace(sl, 1, [5])
>>> sl

[1, 5, 3]

>>> s2 = 'abc'

>>> s2 = replace(s2, 1, 'd")
>>> s2

"adc'

Obecné funkce ocekava sekvence, které podporuji fezy a spojovani.
Kazdou sekvenci miizeme prevést na seznam nasledujici funkei.

def my_list(sequence):
result = []
for i in range(len(sequence)):
result += [sequence[i]]
return result

88

MiZeme si dovolit pouzit pfikaz na zménu seznamu += a to z toho divodu, ze
ménime seznam, ktery jsme si sami vytvorily (nejedna se o argument). Zkouska:

>>> my_list('abc')
['a', 'b', 'c']

>>> my_list([1, 2])
[1, 2]

Stejny efekt ma i vestavéna funkce list:

>>> list('abc')
[lal’ lbl, lcl]
>>> list ([1, 2])
[1, 2]

12.2 Ciselné sekvence
Nasledujici program postupné vytiskne ¢isla od nuly do deviti.

for i in range(10):
print (i)

Ve skuteénosti ¢ast programu range(10) je volani funkce range. Funkce vraci
¢iselnou sekvenci. Jedna se o sekvenci, kde polozky jsou ¢isla od nuly do zada-
ného ¢isla, které uz v sekvenci neni.

>>> rl = range (10)
>>> len(rl)

10

>>> rl1[1]

1

Samotnéa ¢iselna sekvence se tiskne za pouziti funkce range.

>>> range (10)
range (0, 10)

Novy prvni argument v tisku je pocateéni polozka v ¢&iselné sekvenci. Vyhod-
nocenim vyrazu range(0, 10) obdrzime sekvenci rovnou range(10). Nula je
vychozi poc¢atecni prvek sekvence.

>>> range (10) == range(0, 10)
True

Volbou pocateéni polozky muzeme napiiklad vytvorit ¢iselnou sekvenci od deseti
do dvaceti:

>>> r = range (10, 20)
>>> len(r)

10

>>> r[0]

89

10
>>> r[5]
15

Miuzeme také ziskavat fezy ¢iselnych sekvenci:

>>> rl = range (100)
>>> r2 = r1[50:]
>>> r2

range (50, 100)

>>> r2[0]

50

>>> len(r2)

50

Ciselné sekvence ale neni mozné spojovat a ani nelze ménit jejich polozky:

>>> range (10) + range(10, 20)

TypeError: unsupported operand type(s) for +: 'range' and 'range'
>>> r = range (10)

>>> r[l1] = 2

TypeError: 'range' object does not support item assignment

Samoziejmé muzeme pievést Ciselnou sekvenci na seznam pomoci funkce
list:

>>> list(range (50, 100))

[so, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95, 96, 97, 98, 99]

Vyhoda ¢iselnych sekvenci oproti seznamum je, ze ¢iselnd sekvence zabira
oproti ekvivalentnimu seznamu nepatrné misto v paméti - staéi si pamatovat
krajni hodnoty ¢iselné sekvence.

Vsimnéte si délky vykonani posledniho pfikazu pfevadéjiciho ¢iselnou sek-
venci na seznam.

>>> rl = range (10%*8)
>>> rl

range (0, 100000000)
>>> r2 = list(rl)

12.3 Iterace pres sekvence

Vezméme si program tisknouci prvky seznamu:

1 = [10, 3) 8]
for i in range(len(l)):
print (1[i])

90

Vime, Ze volani range(len(1l)) vytvori ¢iselnou sekvenci od nuly do délky
seznamu 1. UkaZzeme si, Ze misto tohoto vyrazu muiZzeme pouzit libovolny vy-
raz, jehoz hodnota je sekvence. Rozsifime si prikaz iterace. Pokud ¢ je jméno
proménné, s vyraz, jehoz hodnota je sekvence, a b blok, pak

for ¢ in s:
b

je prikaz iterace pres sekvenci. Piikaz se vykonava podobné jako ptivodni piikaz
pro iteraci s tim rozdilem, Ze proménné ¢ postupné nabyva hodnot vSech polozek
v sekvenci s. Blok b se tedy vykona pro kazdou polozku sekvence.

Predchozi program miizeme tspornéji napsat takto:

1 = [10, 3, 8]
for element in 1:
print (element)

Sekvenci mtuzeme vytvofit libovolnym vyrazem. Napiiklad spojenim seznami:

for element in ([10, 3] + [8]1):
print (element)

Protoze fetézce jsou sekvence, mizeme iterovat i pres né:

s = 'abcdef'
for char in s:
print (char)

12.4 Volba kroku v fezu a ¢iselné sekvenci

V fezech sekvence muzeme zvolit délku kroku. Pokud s, 1, j, k jsou vyrazy, pak
slizj:k]

je Tez s volbou kroku. Hodnotou s je sekvence, hodnoty ¢ a j jsou indexy
mezer sekvence s a hodnota k je prirozené ¢islo. Hodnota fezu s volbou kroku
je sekvence (stejného typu jako s) kazdé k-té polozky od indexu i po index j.
Vychozi hodnotou vyrazu k je jedna. Naptiklad:

>>> 1 = list(range(10))
>>> 1[0:10:2]

[0, 2, 4, 6, 8]

>>> 1[1:10:2]

(i, 3, 5, 7, 9]

>>> 1[::3]

[0, 3, 6, 9]
>>> 1[::]

[O! 1! 2’ 31 4! 51 6! 71 8! 9]

Krok lze zadat jako tfeti argument ve funkci range:

91

>>> range (0, 10, 2)

range (0, 10, 2)

>>> list(range (0, 10, 2))
[o, 2, 4, 6, 8]

Rez s krokem ¢iselné sekvence s krokem je zase ¢iselna sekvence s krokem:

>>> 1 = range(0, 10, 2)
>>> 1

range (0, 10, 2)

>>> 1[:5:2]

range (0, 10, 4)

>>> list(1[:5:2])

[0, 4, 8]

12.5 Zména Fezu seznamu

Na levé strané od prikazu = muzeme pouzit i fez. Napiiklad nahrazeni druhého
a tfetiho prvku lze provést nasledovné:

>> 1 = [1, 2, 3, 4, 5]
>>> 1[1:3] = [6, 7]

>>> 1

[1, 6, 7, 4, 5]

Délka fezu se nemusi rovna délce seznamu, ktery chceme misto fezu vlozit:

>> 1 = [1, 2, 3, 4, 5]
>>> 1[1:3] = [6, 7, 8]
>>> 1

[1, 6, 7, 8, 4, 5]

Dokonce muZzeme i fez ze seznamu smazat:

>> 1 = [1, 2, 3, 4, 5]
>>> 1[1:3] = []

>>> 1

[1, 4, 5]

Pokud pouzijeme fez s krokem, musi se rovnat délka fezu délce nahrady:

>> 1= [0, 1, 2, 3, 4, 5, 6]

>>> 1[::2] = [7, 8, 9, 10]

>>> 1

[z, 1, 8, 3, 9, 5, 10]

>>> 1[::2]1 = [7, 8, 9, 10, 11]

ValueError: attempt to assign sequence of size 5 to
extended slice of size 4

Na pravé strané od piikazu pfifazeni muze byt libovolné sekvence:

92

>>> 1 = list(range(10))
>>> 1[2:4] = range(3)

>>> 1

(o, 1, o, 1, 2, 4, 5, 6, 7, 8, 9]

>>> 1[4:4] = '"abc'

>>> 1

(o, 1, o, 1, 'a', 'b', 'c¢', 2, 4, 5, 6, 7, 8, 9]

Pokud se dolni i horni mez fezu rovnaji, dojde k vloZeni sekvence do seznamu.

12.6 Zaporny krok

Krok v ¢iselnych sekvenci miize byt i zaporny. To vede na klesajici ¢iselné sek-
vence:

>>> list(range (10, 0, -1))

[io, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(range(5, -5, -2))

[5, 3, 1, -1, -3]

Zaporny krok lze pouzit i v Fezech. Zde se v8ak indexy mezer posunuji o
jedna doprava. Proto:

>>> 1 = list(range(10))

>>> 1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> 1[10:0:-1]

[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> 1[10:0:-2]

[9, 7, 5, 3, 11

>>> 1[3:0:-1]

[3, 2, 1]
>>> 1[10:0:-2] = range(5)
>>> 1

o, 4, 2, 3, 4, 2, 6, 1, 8, 0]

Pokud chceme do fezu se zapornym krokem uvést i prvni prvek, musime
druhou mez vynechat:

>>> 1 = list(range(10))

>>> 1[5::-1]

[5, 4, 3, 2, 1, 0]

>>> 1[::-1]

(o, 8, 7, 6, 5, 4, 3, 2, 1, 0]

12.7 Zaporny index

Polozky sekvence lze &islovat odzadu zapornymi ¢isly. Posledni prvek mé index
-1, pred posledni —2 a tak dale. Napriklad:

93

>>> 1 = list(range(10))
>>> 1[-1]

9

>>> 1[-2]

8

I mezery lze ¢islovat zapornymi &isly. Mezera mezi poslednim a pfedposlenim
prvkem mé index —1. Proto miZeme pouzit zdporné index mezer i v fezech:

>>> 1 = list(range(10))

>>> 1

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> 1[-5:-1]

[5, 6, 7, 8]

>>> 1[-1:-5:-1]

[9, 8, 7, 6]

>>> 1[-1:-5:-1] = [10, 11, 12, 13]
>>> 1

[o, 1, 2, 3, 4, 5, 13, 12, 11, 10]

12.8 Ukoly

Ukol 12.1. Napiste funkci my_slice, ktera bere sekvenci a tii ¢isla 4,7, k a
vraci seznam poloZek sekvence uréeny fezem od i do j po k. Ve funkci nemuzZete
pouzit Tez.

Ukol 12.2. Piepiste predchozi funkei tak, aby pouZivala range jen s jednim
argumentem.

Ukol 12.3. Napiste funkci, ktera rozhodne, zda seznam obsahuje prvky néjaké
¢islené sekvence. Napiiklad seznam [1, 3, 5] lze zapsat jako list(range(1,6,2)),
ale seznam [1, 3, 6] netvofi prvky zadné ¢iselné sekvence.

Ukol 12.4. Napiste funkci, ktera prevede seznam celych &isel na ¢iselnou sek-
venci. Funkce skoné¢i chybou, pokud prevod nelze provést. Chybu mizete zpt-
sobit vyhodnocenim vyrazu 1/0. Vyuzijte funkci z pfedchoziho tkolu.

Ukol 12.5. Ciselnou sekvenci bez kroku mtzeme vyjadrit dvouprvkovy sezna-
mem skladajicim se z dolni a horni meze. Napiste funkci my_range, ktera vytvori
vasi ¢iselnou sekvenci a funkce my_range_from a my_range_to, které vraci dolni
a horni mez vasi ¢iselné sekvence.

Ukol 12.6. Napiste funkce my_range_len a my_range_item, kde prvni vrati
délku vasi ¢iselné sekvence a druhé prvek na daném indexu.

Ukol 12.7. Napiste funkci my_range_list, ktera prevede vasi ¢iselnou sekvenci
na seznam.

Ukol 12.8. Napiste funkci, ktera spoji dvé vase ¢iselné sekvence. Pokud spojeni
nelze provést, funkce skoné¢i chybou.

94

Ukol 12.9. Rozsifte vase ¢iselné sekvence o zadani kladného kroku.
Ukol 12.10. Umoznéte i zaporny krok.

Ukol 12.11. Vytvoite podobné vase geometrické sekvence.

13 Trinacty seminar
13.1 Vstup

Funkce print vytiskne fetézec na vystup a odfadkuje. Obracené funkce input
pfecte jednu Fadku ze vstupu a vrati ji jako Tretézec. Pfedstavme si program
pojmenovany jako input.py.

print (input ())

Program spustény pfikazem python3 input.py bude ¢ekat na nas vstup. Za-
dame napiiklad jablko a stiskneme klavesu Return. Program vytiskne jablko
na vystup a ukonéi se.

% python3 example_input_1.py
jablko

jablko

%

Symbol procenta znazoriuje vyzvu piikazové radky.
Funkci input miuzeme dat vyzvu jako argument:

name = input('Zadejte jméno: ')
print('Vase jméno je ' + name + '.')

Program se zepta na jméno a vytiskne vétu, kterd jméno obsahuje. Naptiklad:

Zadejte jméno: Jan
Vase jméno je Jan.

13.2 Prevody typi

Co kdyz budeme chtit napsat program, ktery ocekava ¢islo a vytiskne ¢islo o
jedna vétsi? Zkusme nésledujici program.

number = input('Zadejte ¢islo: ')
print (number + 1)

Program po zadéni ¢isla skoné¢i chybou. Proc¢?

Zadejte ¢islo: 12
TypeError: can only concatenate str (not "int") to str

95

Duvodem je, Ze funkce input vraci vzdy retézec. Prevést fetézec cifer v
desitkové soustavé na ¢islo jiz umime. JednoduSeji muzeme pouzit funkci int.
Program opravime:

numberl = int(input('Zadejte ¢islo: '))
print (numberl + 1)

a vyzkouSime:

Zadejte ¢islo: 12
13

Predstavme si, Ze mame proménnou age, jejiz hodnota je &islo vyjadiujici
vek uzivatele, a chceme vytisknout vétu informujici uzivatele o jeho véku. Naivni
pokus nebude fungovat:

age = 24
print('Vas vék je

+ age + ' let.")
Program skon¢i chybou:
TypeError: can only concatenate str (not "int") to str

Duvodem je, Ze Fetézec mizeme spojovat pouze s Fetézcem. Pievod &isla na
fetézec jeho cifer v desitkové soustavé také umime, ale opét lze prevod jedno-
duseji uskutecnit funkci str. Opravena verze:

age = 24
print('Vas vék je

+ str(age) + ' let.')
spravné vytiskne:
Vas vék je 24 let.

Funkce str pievede libovolnou hodnotu na fetézec. Mizeme tedy napfiiklad
napsat

output =
output += str('text')
output += '_'

output += str(True)
output += '_'

output += str([1l, 2, 3])
print (output)

Na vystupu se objevi:

text True [1, 2, 3]

96

Kromé funkce str prevadi hodnoty na Fetézec také funkce repr. Rozdil mezi
nimi je v tom, Ze funkce str vraci fetézec Citelny pro ¢lovéka a funkce repr retéz-
covou reprezentaci hodnoty. To je fetézec, ktery obsahuje vyraz, jehoz hodnota
je rovna reprezentované hodnoté. Rozdil je patrny napiiklad u Fetézce:

>>> str('jahoda')
'jahoda'

>>> repr('jahoda')
"'jahoda

Vidime, Ze druha funkce obalila fetézec apostrofy a to z toho davodu, Ze
obsah Tetézce muzeme dat na vstup a ziskat zpé&t hodnotu:

>>> 'jahoda'
'jahoda’

13.3 Formatovani

Vratme se k tisku véty obsahujici &islo:

number = 12
print('Vysledek je

' + str(number) + '.")

Jednoduseji lze program zapsat pomoci formdtovaciho Fetézce. Jeho zapis
je stejny jako zapis obycejného fetézce s tim rozdilem, ze pred apostrof umis-
time znak f. Formatovaci fetézec muze obsahovat vyrazy obklopené slozenymi
zavorkami. Napriklad:

f'Jedna_plus.jedna_je_{1_+.1}."

Hodnota formatovaciho fetézce se ziska tak, Ze se nahradi vSechny vyrazy v
fetézci jejich hodnotami pfevedenymi na Fetézec pomoci funkce str. Predchozi
program lze tedy tspornéji napsat takto:

number = 12
print(f'Vysledek je {number}.')

Protoze se k prfevodu pouziva funkce str, bude fetézec vloZeny do formato-
vaciho fetézce bez uvozovek:

score = 12

name = 'Petr'
result = f'{name} ma {score} bodu.'
print(result)

Program vytiskne:
Petr ma 12 bodu.

Do slozenych zavorek miize byt vlozen libovolny vyraz. Napiiklad program

97

number = 12
print(f'Cislo {number} krat dva se rovna {number * 2}.'")

vytiskne

Cislo 12 krat dva se rovna 24.

13.4 Metody retézct

Jisté byste dokazali napsat funkci, ktera prevede fetézec na velka pismena. Re-
tézce ale jiz maji metodu, kterd prevod uskutecni. Metoda je funkce, ktera je
vlastnéna jistym typem. Napfiklad typ fetézec ma metodu upper. Podobné jako
funkce maji i metody vyraz pro jejich zavolani. Pokud v a a1, ..., a, jsou vyrazy
a m je jméno metody, pak

v.mCa1,...,0p)

je vyraz voldni metody. Typ hodnoty v musi mit metodu m. Hodnotu v nezyvime
prijemce (anglicky self). Hodnotou vyrazu je vysledek volani metody. Napiiklad:

>>> name = 'praha'
>>> name.upper()
'PRAHA'

Cisla ale metodu upper nemaji, proto zavolani metody skonéi chybou.

>>> number = 1
>>> number.upper()
AttributeError: 'int' object has no attribute 'upper'

Podobné fetézce maji metodu lower, ktera prevede fetézec na malé pismena:

>>> "Olomouc'.lower()
'olomouc’

Ukazeme si jesté metodu replace, ktera bere dva fetézce s a so a v Fetézci
nahradi v8echny vyskyty fetézce s; za Fetézec so. Napiiklad:

>>> string = 'Dam si ¢aj.'
>>> string.replace('¢aj', 'kavu')
'Dam si kavu.'

Vyraz v ve volani metody miuze byt dalsi volani metody. Takto je mozné
pfirozené volani metod Fetézit:

>>> string = 'Mam pét knih.'
>>> string.replace('pét', 'Sest').upper()
'"MAM SEST KNIH.'

98

Vime, Ze funkce 1ist pfevede Fetézec na seznam. Napiiklad:
>>> list('abc')
[] a 1 , lb] ,] C 1]
Obréacené prevedeni seznamu znaki na Fetézec 1ze provést metodou join:
>>> "', join(['a', 'b', 'c'])
"abc'
Prijemce zpravy je fetézec, ktery se vklada mezi fetézce v seznamu. Mizeme
tak spojit nejen znaky, ale i seznam Fetézcl za pouziti oddélovace:
>>> '-' join(['ten', 'co', 'se', 'neboji'l])
'ten-co-se-neboji'

Ve skutecnosti metoda opa¢na k join je metoda split, ktera rozdéli fetézec
podle oddélovace a vrati seznam ¢asti:

>>> 'ten-co-se-neboji'.split('-")

v]]

['ten', 'co', 'se', 'neboji']

13.5 Napovéda
Funkce help (i) zobrazi napovédu vestavéné funkce i. Napiiklad
>>> help(len)

zobrazi:

len(obj, /)
Return the number of items in a container.

Lomitko v hlavi¢ce mizete ignorovat.
Napovédu ukonéite stiskem klavesy Q. Funkce umoznuje i zobrazit napovédu
metod. Zde je potieba teckou oddélit typ a nazev metody. Naptiklad:

>>> help(str.upper)
Zobrazi:

upper(self, /)
Return a copy of the string converted to uppercase.

Typ str je fetézec.

Dalsi napovédu lze ziskat na oficialnich strankach. Napiiklad vestavéné funkce
jsou popsény zde: https://docs.python.org/3/library/functions.htmll Po-
pis typu vCetné jejich metod lze nalézt zde: https://docs.python.org/3/
library/stdtypes.html. Nakonec popis jazyka se nachazi tady: https://docs]
python.org/3/reference/index.html

99

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html

	První seminár
	Výrazy
	Promenné
	Program

	Druhý seminár
	Operátor umocnování
	Pravdivostní hodnoty
	Vetvení programu

	Tretí seminár
	Klauzule príkazu vetvení
	Iterace
	Tisk retezce znaku

	Ctvrtý seminár
	Rozšírený príkaz prirazení
	Podmínecné opakování

	Pátý seminár
	Prerušení iterace
	Volání funkce
	Práce s retezci

	Šestý seminár
	Konstanty
	Desetinná císla

	Sedmý seminár
	Funkce
	Seznamy
	Úkoly

	Osmý seminár
	Rozdelení programu do funkcí
	Seznamy ruzných hodnot
	Úkoly

	Devátý seminár
	Desátý seminár
	Rekurze
	Úkoly

	Jedenáctý seminár
	Podseznamy
	Promenlivost seznamu
	Úkoly

	Dvanáctý seminár
	Sekvence
	Císelné sekvence
	Iterace pres sekvence
	Volba kroku v rezu a císelné sekvenci
	Zmena rezu seznamu
	Záporný krok
	Záporný index
	Úkoly

	Trináctý seminár
	Vstup
	Prevody typu
	Formátování
	Metody retezcu
	Nápoveda

