
Základy programování v Pythonu

Jan Laštovička

21. prosince 2020

1 První seminář

1.1 Výrazy
Spusťte příkaz python3 v terminálu. Pokud Python verze 3 nemáte, můžete
jej stáhnout ze stránky https://www.python.org/downloads/ a nainstalovat.
Přivítá vás interpret Pythonu, který za znaky >>> očekává vstup. Zadejte znaky
1 a 2 a stiskněte Return.

>>> 12
12
>>>

Na první pohled se zdá, že interpret pouze vytiskl zadané znaky 12 a čeká
na další vstup. Ve skutečnosti proběhlo několik fází, které si nyní projdeme.
Nejdříve interpret přečetl zadané znaky a vytvořil z nich hodnotu, která re-
prezentuje číslo 12. Pro jednoduchost budeme říkat číslo jak cifrám, které jsme
zadali, tak hodnotě, která vznikla jejich přečtením. Čísla jsou speciálním přípa-
dem výrazů. Dále interpret výraz vyhodnotil. Výsledkem vyhodnocení výrazu je
hodnota. Vyhodnocení čísla probíhá triviálně. Výsledkem je to samé číslo, které
jsme vyhodnocovali. V našem případě číslo 12. Nakonec je výsledná hodnota
vytištěna. Pod námi zadaným vstupem se objevily znaky 12. Tento proces se
opakuje dokud jej nepřerušíme zadáním exit() a stiskem Return. Tím inter-
pret ukončíme a vrátíme se do terminálu. Pokud interpret neukončíme, můžeme
zadat celé nezáporné číslo výpisem jeho cifer v desítkové soustavě. Pro teď nic
jiného neumíme.

Shrňme si práci interpretu. Nejprve je načten vstup (fáze read), poté je
vstup vyhodnocen (fáze eval) a nakonec výsledek vytištěn (fáze print). Tento
proces se opakuje (fáze loop). Spojíme-li počáteční písmena anglických jmen
fází dostaneme zkratku REPL, která tento proces označuje.

Pokusme se zadat před číslo cifru nula.

>>> 01
File "<stdin>", line 1
01
^

1

https://www.python.org/downloads/

SyntaxError: leading zeros in decimal integer literals are not permitted;
use an 0o prefix for octal integers

>>>

Obdrželi jsme syntaktickou chybu (SyntaxError). Syntaktické chyby vzni-
kají ve fázi čtení vstupu a upozorňují nás na to, že porušujeme gramatiku jazyka.
V tomto případě gramatika Pythonu zakazuje začít číslo cifrou nula.

Představíme si další typ výrazu. Máme-li dva výrazy v1 a v2 můžeme vytvořit
výraz

v1+v2

nazývaný součet.
Protože čísla 1 a 2 jsou výrazy, můžeme vytvořit výraz 1+2. Co se stane,

když necháme tento výraz vyhodnotit?

>>> 1+2
3

Jak jste asi předpokládali, obdrželi jsme součet čísel 1 a 2. Pojďme se ale po-
drobněji podívat, jak k tomu došlo. Ve fázi čtení vstupu se vytvořil výraz součtu
v1+v2, kde podvýrazy v1 a v2 jsou postupně čísla 1 a 2. Vyhodnocení výrazu
součtu probíhá tak, že se nejprve vyhodnotí podvýrazy v1 a v2. Tím obdržíme
dvě hodnoty, které následně sečteme. Protože v1 a v2 jsou v našem případě čísla
1 a 2, jejich vyhodnocením, jak již víme, obdržíme opět čísla 1 a 2. Součet je
roven číslu 3. Tím končí fáze vyhodnocení. Zbývá výsledek vytisknout.

Pokud u součtu vynecháme výraz v2 vznikne syntaktická chyba:

>>> 1+
File "<stdin>", line 1
1+
^

SyntaxError: invalid syntax

Poznamenejme, že vynechání podvýrazu v1 k chybně nevede. Tedy vstup +1
je v jazyce platný, ale nejedná se o součet.

Uvědomme si, že součet je také výraz a může tedy vystupovat u dalšího
součtu v roli podvýrazu v1 nebo v2. Gramatika tedy umožňuje vytvořit vstup
1+2+3. Ten dokonce mohl vzniknout dvojím způsobem. Zaprvé jsme nejprve
mohli vytvořili součet 1+2 a poté jej v roli v1 použili v součtu 1+2+3, kde jako
v2 vystupuje číslo 3. Zadruhé jsme mohli začít součtem 2+3 a poté vytvořit
součet 1+2+3, kde v1 by bylo číslo 1 a v2 součet 2+3.

Ať už vstup 1+2+3 vznikl prvním nebo druhým způsobem, interpret po za-
dání vytiskne 6.

>>> 1+2+3
6

2

Platí, že interpret u součtu upřednostnil první způsob vytvoření vstupu. Nejprve
tedy sečetl čísla 1 a 2, tím obdržel číslo 3, a poté k výsledku přičetl číslo 3.

Libovolný výraz můžeme uzavřít do kulatých závorek. Přesněji, pokud je v
výraz, pak

(v)

je také výraz. Výraz (v) se vyhodnotí prostě tak, že se vyhodnotí jediný podvý-
raz v a jeho výsledek je i výsledkem vyhodnocení výrazu (v). Význam závorek
je, že umožňují měnit pořadí vyhodnocení výrazů.

Výraz 1+2+3 interpret vyhodnotí stejně jako výraz (1+2)+3.

>>> (1+2)+3
6

Pomocí závorek můžeme změnit pořadí vyhodnocení součtů.

>>> 1+(2+3)
6

Výsledek je sice stejný jako v prvním případě, ale interpret nejdříve sečetl čísla
2 a 3 a až poté sečetl 1 a 5.

Při zapomenutí otevírací závorky čtení vstupu skončí chybou.

>>> 1+2+3)
File "<stdin>", line 1
1+2+3)

^
SyntaxError: unmatched ')'

Při zapomenutí uzavírací závorky interpret očekává její doplnění na dalším
řádku.

>>> 1+(2+3
...)
6

Uzavřít do závorek lze libovolný výraz. Závorky můžeme přidat i tam, kde
nepřinesou žádný nový význam.

>>> (1)
1
>>> ((1))
1

Součet je příklad operátoru. Jedná se o operátor binární, protože má dva
podvýrazy. K operátoru součtu je přiřazena operace sčítající čísla. Operace je
také binární: vyžaduje dva argumenty nazývané operandy. Rozdíl mezi operá-
torem a operací spočívá v tom, že operátor určuje jak z existujících výrazů

3

složit nový výraz. Oproti tomu operace definuje jakým způsobem se při vy-
hodnocení operátoru spočítá ze vstupních hodnot výsledná hodnota. Například
pomocí operátoru + můžeme ze dvou výrazů 1 a (2+3) složit výraz 1+(2+3).
Při jeho vyhodnocení se vykoná operace sčítání, kde v roli operandů vystupují
dvě hodnoty reprezentující čísla 1 a 5.

Další binární operátory, jejichž operace pracují s celými čísly, jsou - (rozdíl),*
(násobek), // (celočíselné dělení) a % (zbytek po celočíselném dělení).

Vyzkoušejme si nové operátory.

>>> 5-2
3
>>> 5*2
10
>>> 5//2
2
>>> 5%2
1

Všimněme si, že pomocí operátoru - můžeme vytvořit záporné číslo.

>>> 0-1
-1

U operátorů // a % dochází k chybě dělení nulou v případě, že se druhý
podvýraz vyhodnotí na nulu.

>>> 4%0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero
>>> 4//0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

Tato chyba je jiného druhu, než dříve uvedené syntaktické chyby. Nenastává při
čtení vstupu, ale až ve fázi vyhodnocení výrazu.

Nově představené operátory se stejně jako operátor sčítání vyhodnocují zleva
doprava. Proto se například výraz 2-2-2 vyhodnotí jako (2-2)-2.

Operátory + a - mají menší prioritu než operátory *, // a %. To znamená,
že se při čtení vstupu snaží interpret považovat operátory z druhé skupiny jako
podvýrazy operátorů z první skupiny. Například výraz 1+2*3 je chápán jako
1+(2*3). Uvnitř skupin platí aplikování operátorů zleva doprava. Tedy 10//2%3
je to samé jako (10//2)%3

Představíme si jeden operátor, který má pouze jeden podvýraz a proto jej
nazýváme unární. Pokud v je výraz, pak

-v

4

je také výraz. Aby nedocházelo k záměně s binárním operátorem -, označujeme
jej -x. Operátor při vyhodnocení počítá operaci opačného čísla.

>>> -5
-5

Zde vstup -5 je unárním operátorem -x s podvýrazem 5, který se vyhodnotí
tak, že se spočítá opačné číslo k číslu 5. Výsledné záporné číslo −5 je následně
vytištěno znaky -5. Tato skutečnost je zřejměji vyjádřena následovně.

>>> -(5)
-5

Operátor -x má větší prioritu než všechny dosud představené operátory.
Proto například výraz -1-1 je chápán jako (-1)-1.

Kolem znaků uvnitř binárních operátorů někdy píšeme mezery, aby jsme
výraz zpřehlednili. Tyto mezery nemají na význam výrazu žádný vliv. Pro pře-
hlednost můžeme tedy výraz -1-1 zapsat jako -1 - 1.

1.2 Proměnné
Výrazy slouží k vyjádření výpočtu hodnoty. Připomeňme si například, že zá-
porné číslo neumíme zadat přímo, ale musíme jej vypočítat jako opačné číslo ke
kladnému číslu. Kromě výrazu můžeme interpretu zadat příkaz přiřazení hod-
noty do proměnné. Pokud i je jméno proměnné a v výraz, pak

i=v

je příkaz přiřazení. Příkaz se vyhodnotí tak, že se nejprve vyhodnotí výraz v a
poté vznikne vazba proměnné i na výsledek vyhodnocení.

>>> x=1

Interpret nic nevytiskl. Pouze vytvořil vazbu proměnné x na hodnotu 1.
Mluvíme také o tom, že proměnná x má hodnotu 1. Seznam vazeb si můžeme
představit jako tabulku, kde v prvním sloupci jsou jména proměnných a v dru-
hém k nim navázané hodnoty. Tabulka vazeb nyní vypadá následovně.

x 1

Každé jméno proměnné je výrazem. V případě, že proměnná má vazbu na
hodnotu, je výsledkem vyhodnocení navázaná hodnota.

>>> x
1

Pokud proměnná nemá vazbu, skončí vyhodnocení chybou.

5

>>> y
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'y' is not defined

Protože proměnná je výrazem, můžeme ji použít jako podvýraz jiného vý-
razu.

>>> x+x
2

Oproti tomu přiřazení není výrazem a není tedy možné jej použít jako pod-
výraz.

>>> 1+(a=2)
File "<stdin>", line 1
1+(a=2)

^
SyntaxError: invalid syntax

Přiřazení hodnoty k proměnné, která již má vazbu, způsobí, že vazba se
změní na zadanou hodnotu.

>>> x=2

Tabulka vazeb bude po provedení předchozího příkazu vypadat následovně.

x 2

Chcete-li zrušit všechny vazby proměnných, ukončete interpreter vstupem
exit() a znovu jej spusťte.

Z důvodu lepší čitelnosti budeme vždy psát kolem znaku přiřazení mezery.

>>> x = 2

Na pravé straně od znaku přiřazení může být libovolný výraz. Dokážete říci,
co způsobí následující příkaz? (Předpokládáme, že proměnná x má vazbu na
číslo 2.)

>>> x = x

Nejprve se vyhodnotí výraz na pravé straně od rovnítka. Protože se jedná o
proměnnou, která má vazbu, bude výsledkem navázané číslo 2. Poté se změní
vazba proměnné x na číslo 2. Výsledek nebude tedy mít žádný efekt.

A co tento příkaz?

>>> x = x + 1

6

Podobně jako v předchozím případě se nejprve vyhodnotí výraz na pravé straně.
Zde ale je výraz x + 1 jehož hodnota je 3. Poté dojde ke změně vazby proměnné
x na hodnotu 3. Efekt bude takový, že hodnota proměnné se zvýší o jedna.

Jméno proměnné může obsahovat písmena, číslice a podtržítka. Jména zpra-
vidla píšeme malými písmeny v anglickém jazyce a jednotlivá slova oddělujeme
podtržítkem.

>>> age = 15
>>> person1_height = 179

Proměnná nesmí začínat číslicí. To by vedlo k chybě v syntaxi.

>>> 1age
File "<stdin>", line 1
1age
^

SyntaxError: invalid syntax

1.3 Program
V následujících částech budete potřebovat program Visual Studio Code s rozšíře-
ním pro Python (https://code.visualstudio.com). Vytvořte si nový adresář
kam budete ukládat programy. Spusťte Visual Studio Code a dejte otevřít nově
vytvořený adresář volbou Open folder... Vytvořte nový soubor s obsahem

print(1)

a uložte jej pod názvem pr1.py. V položce Run lišty aktivit (sloupec vlevo) si
nechte vytvořit launch.json soubor a vyberte si první možnost (Python File).

Soubor launch.json můžete zavřít. Spusťte klikem na zelený trojúhelník
program (). V otevřeném terminálu je vidět výstup programu:

1

7

https://code.visualstudio.com

Okno studia by mělo nyní vypadat následovně.

Obsahem souboru je malý program sestávající z jediného řádku: print(1)
Jedná se o příkaz tisku. Přesněji pokud v je výraz, pak

print(v)

je příkaz tisku. Příkaz se vykoná (vyhodnotí) tak, že se nejdříve vyhodnotí výraz
v a poté se výsledek vytiskne.

Spuštění programu vykoná příkaz tisku a tím vytiskne číslo 1. Možná vás
napadlo, že stejný význam by mělo do programu napsat jen výraz 1. Spuštění
takového programu by nemělo žádný efekt. Nedojde k tisku žádného výstupu a
program by měl stejný význam, jako by byl prázdný. Nejprve uveďme, že každý
výraz je i příkazem. Tedy náš program obsahující pouze 1 je z pohledu zápisu
správný. Tisk výsledku vyhodnocení výrazu se ale provádí pouze v interaktivním
(REPL) režimu interpretu. Proto v spuštěných programech potřebujeme k tisku
hodnoty použít příkaz print.

Podívejme se na mírně složitější program.

a = 1
print(a)

Program zapsaný v souboru se skládá ze dvou příkazů. Spuštění programu
postupně vykoná oba příkazy. Nejprve se vykoná příkaz přiřazení a = 1. Tím
vznikne vazba proměnné a na číslo 0. Poté se vykoná příkaz tisku print(a).
Výraz a se vyhodnotí na číslo 1, které se příkazem vytiskne. Efekt bude tedy
opět tisk čísla 1.

Program se obecně skládá z příkazů a běh každého programu probíhá tak,
že se postupně vykonávají jeho příkazy.

Další rozdíl mezi interaktivním módem a spuštěním programu zapsaného v
souboru spočívá v tom, že v druhém případě se provede kontrola gramatiky

8

celého programu před jeho spuštěním. V následujícím příkladu se tedy první
příkaz vůbec neprovede, protože druhý řádek obsahuje syntaktickou chybu.

print(1)
1+

Pokus o spuštění skončí chybou

File ".../pr1.py", line 2
1+
^

SyntaxError: invalid syntax

Porovnejme výpis po spuštění následujícího programu.

print(1)
1/0
print(2)

V terminálu se objeví:

1
Traceback (most recent call last):
File ".../pr1.py", line 2, in <module>
1/0

ZeroDivisionError: division by zero

Vidíme, že došlo k vykonání prvního příkazu a vytištění číslice 1. Teprve až
vykonání druhého příkazu skončilo chybou. Běh programu se tím zastavil a k
vykonání třetího příkazu vůbec nedošlo.

Klikneme-li nalevo od čísla řádku vložíme na řádek zarážku anglicky break-
point (). Vložme zarážku na první řádek () a spusťme program
pro ladění volbou Start Debugging () v položce Run () na-
bídky aktivit. Studio by nyní mělo vypadat jako na níže uvedeném obrázku.

9

Vidíme, že vykonávání programu se zastavilo na zarážce ještě před vyko-
náním prvního příkazu. Nyní máme dvě možnosti. Můžeme nechat program
vykonávat další příkazy od zarážky volbou Continue (), nebo vykonat ná-
sledující příkaz a znovu se zastavit volbou Step Over (). Využijeme druhé
možnosti, které budeme říkat krok, a vykonáme příkaz print(1). Na výstup se
vytisklo číslo 1. Vykonávání programu je nyní zastavené na příkazu 1/0. Další
krok v programu způsobí chybu dělení nulou a studio v programu označilo místo,
kde k chybě došlo. Pokus o další krok chybu vytiskne a program ukončí. Pro-
ces, kterým jsme nyní prošli, nazýváme krokováním programu. Klikem zarážku
odstraníme.

Při zastavení programu studio v sekci Variables (vlevo nahoře) zobrazuje
aktuální vazby proměnných. Vezměme si program

x = 1
y = x + 1
x = y * 3
print(x)

a přidejme zarážku na poslední příkaz a spusťme program pro ladění. Pro-
gram se před tiskem zastavil a ve studiu vidíme, že proměnná x má vazbu na
číslo 6 a proměnná y na 2. Necháme program doběhnout a přesuneme zarážku na
první řádek. Krokováním programu můžeme sledovat jak se vazby proměnných
vytvářejí a mění.

V kostře programu

x = 1
y = 2
?
print(x)

10

print(y)

chceme na místo ? doplnit kód tak, aby se prohodily vazby proměnných x
a y. Program by tedy měl vytisknout nejdříve 2 a poté 1. Myslíte si, že bude
následující řešení fungovat?

x = 1
y = 2
x = y
y = x
print(x)
print(y)

Projdeme si běh programu. První dva příkazy vytvoří vazby x na 1 a y na 2. Po
vykonání třetího příkazu se vazba x změní na 2. Všiměme si, že nyní jsme přišli o
informaci jaká hodnota byla původně navázána na x. Čtvrtý příkaz změní vazbu
y na aktuální hodnotu proměnné x, kterou je hodnota 2. Pátý i šestý příkaz tedy
vytiskne číslici 2.

Řešení spravíme tím, že si před provedením třetího příkazu uložíme hodnotu
proměnné x do pomocné proměnné z.

x = 1
y = 2
z = x
x = y
y = z
print(x)
print(y)

Krok za krokem si projděte program ve studiu.
Programátor by měl program psát především tak, aby byl srozumitelný pro

programátora, který program bude číst. Tím může být buď jiné programátor,
nebo jeho tvůrce, který po nějaké době zapomene, jak program fungoval. Z
tohoto důvodu je dobré do programu dodávat prázdné řádky, které logicky od-
dělují části kódu a hlavně komentáře. Pokud na nějakém řádku je znak #, tak
vše, co je za tímto znakem až do konce řádku, se počítá za komentář a do pro-
gramu nepatří. Předchozí program můžeme tedy zpřehlednit tak, jak je ukázáno
na Obrázku 1.

Dokážete v následující kostře programu chybějící místo doplnit tak, aby se
hodnota proměnné y dostala do proměnné x, hodnota proměnné z do proměnné
y a konečně hodnota proměnné x do proměnné z? Program by tedy měl postupně
vytisknout čísla 2, 3 a 1.

x = 1
y = 2
z = 3
?

11

Prohození vazeb proměnných.

vstupní hodnoty
x = 1
y = 2

z = x # proměnná z je pomocná
x = y
y = z

tisk výstupních hodnot
print(x)
print(y)

Obrázek 1: Program s komentáři.

print(x)
print(y)
print(z)

Část programu, kde se zadávají hodnoty proměnných, budeme nazývat vstu-
pem, a část, která tiskne výsledek programu, výstupem. Předchozí úkol by tedy
šel formulovat takto: Pro tři zadané hodnoty x1, x2 a x3 na vstupu vraťte na
výstupu hodnoty x2, x3 a x1.

Úkol 1.1. Jsou dány délky stran obdélníku. Vraťte jeho obvod a obsah.

Úkol 1.2. Pro zadanou dálku hrany spočtěte obsah krychle.

Úkol 1.3. Kolik vteřin trvá časový úsek zadaný počtem vteřin, minut, hodin a
dnů?

Úkol 1.4. Rychlost světla ve vakuu je přibližně 299 792 458 m/s. Jedna astro-
nomická jednotka (AU) má 149 597 870 700 m. Přibližně za kolik vteřin urazí
světlo ve vakuu zadaný počet astronomických jednotek? Vzdálenost Slunce a
Země je přibližně 1 AU, vzdálenost Slunce a Pluta je přibližně 40 AU.

Úkol 1.5. Pro zadaná přirozená čísla n1 a n2 vraťte nulu v případě, že jsou
obě sudá. Lze problém vyřešit tak, že prostě vždy vrátíme nulu? Co když zadání
změníme tak, že program musí vrátit nenulové číslo v opačném případě.

Úkol 1.6. Vraťte číslo jedna, pokud je zadané číslo sudé, jinak vraťte nulu.

Úkol 1.7. Vraťte nulu právě tehdy, když je zadané číslo dělitelné třemi, pěti
a sedmi. Lze program zjednodušit tak, aby se počítal zbytek po dělení pouze
jednou?

Úkol 1.8. Máme dána dvě trojciferná čísla n1 a n2. Úkolem je vrátit číslo,
jehož cifry budou nejdříve cifry čísla n1 a poté cifry čísla n2.

12

Úkol 1.9. Vraťte všechny cifry zadaného trojciferného čísla.

Úkol 1.10. Prohoďte první a třetí cifru trojciferného čísla.

Úkol 1.11. Vraťte nulu právě tehdy, když je čtyřciferné číslo palindrom. Číslo
je palindrom pokud se čte stejně zleva doprava i zprava doleva. Například číslo
1221 je palindrom, ale číslo 1222 palindrom není.

Úkol 1.12. Jsou dány cifry čtyřciferného čísla v dvojkové soustavě. Převeďte
číslo do desítkové soustavy.

Úkol 1.13. Pro číslo menší než 32 vraťte všechny jeho cifry v dvojkové soustavě.

Úkol 1.14. Upravte poslední cifru zadaného čísla tak, aby bylo výsledné číslo
dělitelné třemi.

Úkol 1.15. Bod v rovině je určen celočíselnými souřadnicemi x a y. Souřadnice
jsou v rozmezí 〈0, 100). Jaké souřadnice bude mít bod, když jej posuneme v x-ové
ose o 10 a v y-ové ose o 20 jednotek a poté dvakrát vzdálíme od počátku?

Úkol 1.16. Pomocí až čtyřciferného čísla c1c2c3c4 reprezentujeme dvě až dvou-
ciferná čísla c1c2 a c3c4. Například číslo 1234 reprezentuje čísla 12 a 34. V
případě, že by cifry c1 a c2 chyběly, bere se první číslo rovné nule. Tedy 12
reprezentuje čísla 0 a 12. Nyní máme na vstupu dvě takové až čtyřciferné repre-
zentace dvojce čísel. Úkolem je vrátit reprezentaci dvojce součtu sobě odpoví-
dajících čísel. Například pro 1234 a 2431 vrátíme 3665, protože 12 + 24 = 36 a
34 + 31 = 65. V případě, že by součet nějaké složky vyšel tříciferný, první cifru
zahodíme. Tedy například pro 8912 a 9000 vrátíme 7912, protože 89+90 = 179,
12 + 0 = 12 a u čísla 179 zahodíme cifru 1 a dostaneme 79.

Úkol 1.17. Pomocí až čtyřciferného čísla c1c2c3c4 reprezentujeme desetinné
číslo c1c2, c3c4. Například číslo 1234 reprezentuje desetinné číslo 12, 34. Cifry
přiřazujeme odzadu. Tedy číslo 12 reprezentuje desetinné číslo 0, 12. Mějme
zadány dvě reprezentace desetinných čísel. Cílem je vrátit reprezentaci jejich
součtu. Tedy pro 1212 a 2111 vrátíme 3323 protože 12, 12 + 21, 11 = 33, 23.
V případě, že by vznikla při součtu pěticiferná reprezentace, první cifru zaho-
díme. Tedy pro 9999 a 1 vrátíme 0, protože 99, 99 + 0, 01 = 100. Reprezentace
součtu je 10000 a zahozením první cifry obdržíme nulu.

Úkol 1.18. Pro zadané přirozené číslo vraťte součet všech přirozených čísel,
která jsou menší nebo rovno než toto číslo.

2 Druhý seminář

2.1 Operátor umocňování
Na začátek si představíme z pohledu vyhodnocování netradiční binární operátor
mocniny **. Levý podvýraz určuje mocněnce a pravý mocnitele. Proto tedy
platí:

13

>>> 5 ** 2
25

Neboli 52 = 25. Aby byl výsledek celočíselný, omezíme se na situace, kde
mocnitel je nezáporné číslo. Záludné je, že mocnina má vyšší prioritu než unární
-x. Proto překvapivě platí:

>>> -1 ** 2
-1

To z toho důvodu, že výraz -1**2 se vyhodnotí stejně jako -(1**2). Nyní
již výsledek není překvapením. Další výjimka spočívá v tom, že mocnina se na
rozdíl od všech ostatních operátorů vyhodnocuje zprava do leva. Proto

>>> 2 ** 2 ** 3
256

počítá, že 2(2
3) = 28 = 256, tedy stejně jako 2 ** (2 ** 3). To odpovídá

konvenci mocnění v matematice, kde platí, že bp
q

= b(p
q). Vyhodnocení zleva

doprava musíme vynutit uzávorkováním:

>>> (2 ** 2) ** 3
64

Spočítali jsme, že (22)3 = 43 = 64.
Zopakujeme si prioritu operátorů. Nejmenší prioritu má součet + a rozdíl -

dále jsou násobek *, dělení // a zbytek po dělení * poté následuje opačné číslo
-x a největší prioritu má mocnina **.

2.2 Pravdivostní hodnoty
Jediný typ hodnot, se kterým jsme dosud pracovali, byla celá čísla. Celých čísel
je potencionálně nekonečně mnoho. Mohli jsme vytvořit libovolně velké celé
číslo. Nyní si uvedeme nový typ hodnot, který bude naopak velmi malý, pouze
dvě hodnoty budou tohoto typu. Zavedeme typ pravdivostní hodnota, který bude
obsahovat pouze hodnotu pravda a hodnotu nepravda.

Hodnotu pravda získáme přečtením výrazu True a hodnotu nepravda pře-
čtením výrazu False. Pravdivostní hodnoty se tisknou zpět na tyto výrazy.
Pravdivostní hodnoty se stejně jako čísla vyhodnocují sami na sebe. Obecně lze
říci, že každá hodnota se vyhodnotí sama na sebe. Proto platí následující.

>>> True
True
>>> False
False

14

Čísla a pravdivostní hodnoty patří mezi literály. Literál je zápis hodnoty
přímo v programu. Proměnné naopak mezi literály nepatří. Jejich hodnota je
určena až za běhu programu.

Uvedeme tři operátory nezývané pravdivostní operátory, které pracují s prav-
divostními hodnotami: or, and a not. Operátory or a and jsou binární a operátor
not je unární. Operace přiřazené operátorům jsou dány následujícími tabulkami.

or True False
True True True
False True False

and True False
True True False
False False False

not
True False
False True

Proto platí:

>>> True or False
True
>>> True and False
False
>>> not True
False

Pravdivostní operace můžou mít jako své operandy libovolné hodnoty. Na-
příklad výraz 1 and 2 má hodnotu 2. My se na semináři omezíme pouze na
operandy, které jsou pravdivostní hodnoty.

Každý z pravdivostních operátorů má jinou prioritu. Nejmenší prioritu má
operátor or, dále je and a nakonec je operátor not s nejvyšší prioritou. Prio-
rity pravdivostních operátorů jsou ilustrovány následujícím příkladem, kde oba
výrazy mají stejný význam.

>>> not False and not True or True
True
>>> ((not False) and (not True)) or True
True

K zjednodušení výrazů můžeme použít znalost zákonů logiky. Můžeme na-
příklad použít zákon dvojí negace a dostaneme následující tvrzení. Pro libovolný
výraz v platí, že výraz not not v má stejnou hodnotu jako výraz v. Budeme také
říkat, že tyto výrazy jsou ekvivalentní. Běžně také budeme používat takzvané
De Morganovy zákony. Pro výrazy v1 a v2 platí, že výraz

not v1 and not v2

15

je ekvivalentní výrazu

not (v1 or v2)

a výraz

not v1 or not v2

je ekvivalentní výrazu

not (v1 and v2).

Pro implikaci nemáme žádný operátor a musí být vyjádřena podle zákonu o
náhradě implikace disjunkcí. Tedy chceme-li pro výrazy v1 a v2 vyjádřit, že v1
implikuje v2, vytvoříme výraz

not v1 or v2.

Úkol 2.1. Za použití zákonů logiky zjednodušte výrazy

1. not (not x or not y),

2. x and x and x,

3. x and y or x and z.

Ukážeme si další operátory nazývané porovnávací operátory, které se vyhod-
nocují na pravdivostní hodnoty. Patří mezi ně binární operátory <, <=, >, >=,
!= (nerovnost) a == (rovnost). Operátory <, <=, >, >= pro číselné argumenty
porovnávají hodnoty čísel. Například

>>> 1 < 0
False
>>> 2 < 2
False
>>> 2 <= 2
True
>>> 3 > 2
True
>>> 4 >= 5
False

Operátory rovnosti a nerovnosti lze použít na libovolné hodnoty. Tedy jak
na čísla tak na pravdivostní hodnoty.

>>> 100 == 100
True
>>> True != False
True

16

Všimněme si, že rovnost zapisujeme dvěma znaky rovnítka (==), protože
jeden znak rovnítka máme vyhrazený pro příkaz přiřazení. Zapomenutí druhého
rovnítka vede k časté chybě:

>>> 10 = 10
File "<stdin>", line 1

SyntaxError: cannot assign to literal

Zde se ve skutečnosti snažíme přiřadit hodnotu 10 literálu 10, což není
možné.

Operátory porovnání mají menší prioritu než aritmetické operátory (+, *,
. . .) a větší prioritu než pravdivostní operátory (or, and a not). Proto platí, že
následující dva výrazy se vyhodnotí přesně stejně.

>>> 10 + 5 == 15 and -1 == 0 - 1
True
>>> ((10 + 5) == 15) and ((-1) == (0 - 1))
True

Operátory porovnání mají obvyklé vlastnosti, které známe z matematiky.
Například pro výrazy v1 a v2 platí, že výraz

v1!= v2

je ekvivalentní výrazu

not v1== v2

a

v1 < v2

je ekvivalentní výrazu

v2 > v1.

Zaměřme se nyní na vyhodnocení pravdivostních operátorů and a or. Platí,
že jejich podvýrazy se vyhodnocují jen, pokud je to nutné. Výraz

True or 5 + a == 10

bude vždy pravdivý bez ohledu na vazbu proměnné a. Vyhodnocování vý-
razu se tedy nebude obtěžovat vyhodnocením podvýrazu 5 + a == 10 a vrátí
pravdu. Podobně výraz

1 != 1 and a < 5

bude vždy nepravdivý.
Říkáme, že vyhodnocení operátorů or a and je líné. Podívejme se ještě na

jeden příklad

17

a == 0 or 20 % a == 0

Pokud by se operátor or nevyhodnocoval líně, skončilo by vyhodnocení pro
a rovno 0 chybou při pokusu dělit nulou. Líné vyhodnocování však nejdříve
vyhodnotí podvýraz a == 0 a pokud je pravdivý, vrátí rovnou pravdu. Výraz
tedy vrací pravdu, pokud je a rovno nule nebo není rovno nule a dělí číslo dvacet.

Poznamenejme, že při uplatňování pravidel logiky musíme být obezřetní
v případech, kdy vyhodnocení výrazu může skončit chybou. Předchozí výraz
tedy není ekvivalentní výrazu

20 % a == 0 or a == 0

a to přesto, že u logické spojky nebo nezáleží na pořadí spojovaných výroků.
Druhý výraz skončí chybou pro a rovno 0.

Úkol nás může vyzvat, že máme rozhodnout, zda platí nějaké tvrzení. Vez-
měme si například následující úkol.

Jsou dána dvě celá čísla a a b. Rozhodněte, jestli je a menší než b.

V takovém případě je náš cíl napsat program, který má na vstupu dvě čísla
a a b. Program vrátí True, jestliže tvrzení platí (a < b). V opačném případě
musí vrátit False. Řešení by mohlo vypadat takto:

vstup
a = 1
b = 2

porovnání
result = a < b

výstup
print(result)

Úkol 2.2. Pro zadaná přirozená čísla a, b a c rozhodněte, zda platí a2+b2 = c2.

2.3 Větvení programu
Dostáváme se k představení příkazu, který nám umožňuje vykonat určité příkazy
jen, pokud je splněna zadaná podmínka. Přesněji pokud máme výraz v a příkazy
p1, p2, . . . , pn pak

if v:
p1
p2
. . .
pn

18

je příkaz větvení. Příkazy p1, . . . , pn jsou odsazené tabulátorem. První řádek

if v:

se nazývá hlavička a příkazy p1, . . . , pn se nazývají tělo příkazu větvení. Před-
pokládáme, že výraz v má pravdivostní hodnotu. Příkaz větvení se vykoná tak,
že se nejdříve vyhodnotí výraz v. Pokud je jeho hodnota pravda, vykonají se
postupně výrazy p1, . . . , pn v opačném případě vykonávání skončí.

Ukážeme si příklad použití.

a = 5
if a < 10:
print(a)

Byl použit příkaz větvení, kde výraz v je a < 10, n = 1 a příkaz p1 je
print(a). Spuštění programu nejprve vytvoří vazbu proměnné a na hodnotu
5 (první řádek), dále vyhodnotí a < 10 na hodnotu True. Protože hodnota je
pravda, vykoná se tělo příkazu větvení. Přesněji se vykoná příkaz print(a)
a hodnota a se vytiskne. Pokud v prvním řádku změníme pravou stranu od
rovnítka na 10, výraz v hlavičce větvení se vyhodnotí na False a vykonání těla
se neprovede. Program skončí bez tisku jakékoliv hodnoty.

Příkaz větvení můžeme použít na výpočet absolutní hodnoty zadaného čísla.

x = -5
if x < 0:
x = -x

print(x)

Všimněte si, že konec příkazu větvení je dán odsazením jeho těla. Následující
část programu je tedy příkaz větvení.

if x < 0:
x = -x

Příkaz měnící znaménko hodnoty proměnné x se provede jen, pokud je číslo
záporné. Projděte si krok po kroku program. Krokem projděte program pro
hodnoty 0 a 10.

Pokud odstraníme dvojtečku v příkazu větvení, dojde k chybě:

if x < 0
^

SyntaxError: invalid syntax

Tělo větvení se může skládat z více příkazů. Následující program prohodí
hodnoty a a b, pokud je b menší než a.

19

a = 4
b = 2
if b < a:
c = a
a = b
b = c

print(a)
print(b)

Vyzkoušejte si program pro a rovno 2 a b rovno 4.
Samozřejmě můžeme použít víc příkazů větvení za sebou.

a = 10
if a < 100:
print(1)

if a >= 0:
print(2)

Co program dělá? Zkuste jej spustit pro hodnoty 120 a −1.
Protože příkaz větvení je opět příkazem, můžeme jej použít v roli příkazu pi

pro nějaké i v těle jiného příkazu větvení.

a = 4
if a % 2 == 0:
if a == 4:
print(1)

print(2)

Co program vytiskne? Co vytiskne pro hodnoty 2 a 1?
Zde příkaz větvení

if a == 4:
print(1)

je použit v těle příkazu větvení:

if a % 2 == 0:
if a == 4:
print(1)

print(2)

Další chybou by bylo, když by nebyly všechny příkazy v těle příkazu větvení
stejně odsazeny. Pokus o spuštění programu

a = 0
if a == 0:
print(1)
print(2)

20

skončí chybou

line 4
print(2)
^

IndentationError: unexpected indent

Úkol 2.3. Realizujte znaménkovou funkci, též známou jako funkce signum.
Funkce pro kladné hodnoty vrátí číslo 1, pro záporné číslo −1 a pro 0 vrátí 0.

Úkol 2.4. Jsou dány tři celá čísla a, b a c. Rozhodněte, zda a náleží do otevře-
ného intervalu (b, c).

Úkol 2.5. Úkolem je napsat program, který žákovi přiřadí známku z bodované
písemky. Jsou dány bodové hranice pro jednotlivé známky x4, x3, x2 a x1. Před-
pokládáme, že platí x4 < x3 < x2 < x1. Dále je dán počet bodů, které žák
získal. Aby žák například dostal čtyřku, musí získat aspoň x4 a méně než x3
bodů.

Úkol 2.6. Seřaďte tři čísla podle velikosti.

Úkol 2.7. Jsou zadány tři délky (nezáporná čísla). Rozhodněte, zda je možné
sestrojit trojúhelník, jehož strany budou mít zadané délky.

Úkol 2.8. Rozhodněte, zda je trojúhelník, u něhož známe délky všech tří stran,
pravoúhlý.

Úkol 2.9. Jsou dány velikosti vnitřních úhlů trojúhelníku, vraťte jedna, pokud
je trojúhelník ostroúhlý, dva, pokud je pravoúhlý a tři, pokud se jedná o tupo-
úhlý trojúhelník. Rozhodněte, zda je trojúhelník, u něhož známe délky všech tří
stran, pravoúhlý.

Úkol 2.10. Rozhodněte, zda čtyři daná čísla tvoří aritmetickou posloupnost.

Úkol 2.11. Pro bod vraťte číslo kvadrantu. Pravý horní kvadrant má číslo
jedna, levý horní dva, levý spodní tři a konečně pravý dolní čtyři.

Úkol 2.12. V souřadnicovém systému je dán bod a obdélník. Bod souřadnicemi
px a py, obdélník souřadnicemi levého horního rohu rx a ry dále šířkou w a
výškou h. Rozhodněte, zda bod leží uvnitř obdélníku.

Úkol 2.13. Do jakých kvadrantů zasahuje úsečka daná souřadnicemi koncových
bodů?

Úkol 2.14. Některá desetinná čísla můžeme zapsat ve tvaru s · 10e, kde s je
trojciferné číslo a e je celé číslo. Například 5 = 500 · 10−2, 0, 1 = 100 · 10−3 a
1200 = 120 · 101. Naopak číslo 1234 v tomto tvaru zapsat nelze. Číslo tohoto
tvaru tedy můžeme reprezentovat dvojicí čísel s a e. Napište program, který
sečte dvě čísla tohoto tvaru. Výsledek musí být opět zadaného tvaru. Například
pro 120 · 100 a 300 · 10−2 program vrátí 123 · 100 nebo pro 999 · 101 a 100 · 10−2

program vrátí 100 ·102. V případě potřeby můžete zaokrouhlovat. Například pro
901 ·100 a 100 ·100 program vrátí 100 ·101 nebo pro 100 ·105 a 100 ·100 program
vrátí 100 · 105.

21

3 Třetí seminář

3.1 Klauzule příkazu větvení
Vezměme si následující program, který vrátí číslo jedna, pokud je vstup větší
jak dvacet a jinak vrátí číslo dvě.

x = 10

if x > 20:
y = 1

if x <= 20:
y = 2

print(y)

Všimněme si, že bude platit právě jedna z podmínek x > 20 a x <= 20.
Pokud známe pravdivost první podmínky, nemá smysl vyhodnocovat druhou
podmínkou - její pravdivost již známe.

Rozšíříme si příkaz větvení, aby jednoduše vyjádřil podobné situace. Nejdříve
si zavedeme pojem bloku. Blok je

p1
. . .
pn

kde p1, . . . , pn jsou příkazy. Neboli blok je posloupnost příkazů. Nyní pokud
v je podmínka, b1 a b2 bloky, pak

if v:
b1

else:
b2

je další forma příkazu větvení. Částem

if v:
b1

a

else:
b2

se říká klauzule příkazu větvení. Každá klauzule má hlavičku a tělo. Hlavička
začíná klíčovým slovem a končí dvojtečkou. Tělo je odsazený blok příkazů. Tedy
příkaz větvení může mít jednu nebo dvě klauzule. Vykonání příkazu větvení
s klauzulí else probíhá tak, že se nejprve vyhodnotí podmínka v. Pokud je
pravdivá, vykoná se blok b1, jinak se vykoná blok b2.

Úvodní příklad je tedy možné úsporněji zapsat následovně.

22

x = 10

if x > 20:
y = 1

else:
y = 2

print(y)

Podívejme se na program počítající znaménkovou funkci:

n = 10

if n > 0:
signum = 1

if n < 0:
signum = -1

if n == 0:
signum = 0

print(signum)

S použitím klauzule else příkazu větvení jej můžeme přepsat následovně.

n = 10

if n > 0:
signum = 1

else:
if n < 0:
signum = -1

else:
signum = 0

print(signum)

Můžeme si představit, že program se dělí do tří větví. Zde musíme použít
vnořené větvení, protože zatím příkaz větvení umožňuje rozdělit program do
dvou větví.

Rozšíříme si příkaz větvení tak, aby mohl program rozdělit do libovolného
počtu větví. Pokud v1, v2 . . . , vn jsou podmínky a b1, b2 . . . , bn, bn+1 jsou bloky,
pak

if v1:
b1

elif v2:
b2

23

. . .
elif vn:
bn

else:
bn+1

je další forma příkazu větvení.
Vidíme, že jsme umožnili přidávat klauzule elif mezi klauzule if a else.

Příkaz se vykoná tak, že se postupně vyhodnocují podmínky v1, v2, . . . , vn až se
narazí na první pravdivou. Řekněme, že první pravdivá podmínka je vi. Pak se
vykoná blok bi a vykonávání příkazu skončí. Pokud by žádná podmínka nebyla
pravdivá, vykoná se blok bn+1.

Znaménkovou funkci lze za použití klauzule elif zapsat pouze jedním pří-
kazem větvení takto:

n = 10

if n > 0:
signum = 1

elif n < 0:
signum = -1

else:
signum = 0

print(signum)

Poznamenejme, že klauzule else je nepovinná a že podmínky v1 . . . , vn ne-
musí být výlučné. Program, který pro záporná čísla vytiskne jedničku a pro čísla
menší než deset dvojku lze zapsat následovně.

n = -2

if n < 0:
print(1)

elif n < 10:
print(2)

Zde dojde jen k tisku čísla jedna, přestože podmínka n < 10 klauzule elif
je pravdivá. Pro n rovno 10 program nic nevytiskne.

Část o příkazu větvení ukončíme shrnutím. Příkaz musí začínat klauzulí if,
následovat může několika klauzulemi elif a může končit jednou klauzulí else.

3.2 Iterace
Představme si, že chceme nějaký kus kódu opakovat pětkrát pouze se změnou
jisté hodnoty v kódu. Například chceme postupně vytisknout všechna nezáporná
čísla menší než pět. Můžeme to provést následujícím programem.

24

print(0)
print(1)
print(2)
print(3)
print(4)

Lze úkol splnit tak, aby příkaz tisku byl při každém kroku stejný? Odpověď
je pozitivní:

i = 0
print(i)
i = 1
print(i)
i = 2
print(i)
i = 3
print(i)
i = 4
print(i)

Touto technikou můžeme blok příkazů opakovat, ale počet opakování musí
být předem zadán. Vidíme, že v bloku máme k dispozici číslo opakování v pro-
měnné i. Co ale když počet opakování neznáme předem? Chceme například
vytisknout všechna nezáporná celá čísla menší než zadané číslo. Za tímto úče-
lem zavedeme příkaz cyklu for. Jedná se podobně jako příkaz větvení o složený
příkaz. Složené příkazy jsou příkazy, které se skládají s klauzulí, jejichž těla ob-
sahují opět příkazy. Mějme jméno proměnné i, výraz v jehož hodnota je celé
nezáporné číslo a blok b, pak

for i in range(v):
b

je příkaz cyklu for. Tento příkaz se vykoná tak, že se nejdříve vyhodnotí
výraz v a tím se získá číslo n udávající počet opakování. Dále se n krát vykonají
příkazy bloku b. Před každým vykonáním bloku se nastaví hodnota proměnné i
na číslo opakování, které se počítá od nuly. Tedy při prvním opakování bude i
nastaveno na 0, při druhém na 1 a tak dále.

Výše uvedený program lze tedy přepsat následovně.

for i in range(5):
print(i)

Počet opakování již může být proměnnou:

n = 5

for i in range(n):
print(i)

25

Všimněte si, že proměnná i je nastavena před každým vykonáním těla cyklu.
Její změnou tedy nelze ovlivnit počet opakování. Následující program například
desetkrát vytiskne nulu bez ohledu na příkaz i = i + 1.

for i in range(10):
print(0)
i = i + 1

Pokud proměnná i měla před vykonáním cyklu nějakou vazbu, je tato vazba
změněna. Navíc z toho jak vykonání cyklu probíhá plyne, že po skončení cyklu
bude mít proměnná i vazbu na číslo poslední iterace. Například následující pro-
gram desetkrát vytiskne nulu a poté devítku.

i = 5
for i in range(10):
print(0)

print(i)

Pokud počet opakování n vyjde rovný nule. Příkaz cyklu for se rovnou
ukončí. Například program

for i in range(0):
print(1)

nic neudělá.
Co když budeme chtít vytisknout všechna sudá čísla menší nebo rovno než

zadané číslo? Můžeme postupovat dvojím způsobem. Zaprvé je možné vložit
příkaz větvení do příkazu cyklu:

n = 10

for i in range(n):
k = i + 1
if k % 2 == 0:
print(k)

Zadruhé můžeme upravit počet opakování:

n = 10

for i in range(n // 2):
print((i + 1) * 2)

Následující program vytiskne všechny dělitele zadaného čísla.

Vytiskne všechny dělitele zadaného čísla.
n = 100

26

for i in range(n):
k = i + 1
if n % k == 0:
print(k)

Předchozí program stačí mírně upravit a obdržíme program rozhodující o
tom, zda je dané číslo prvočíslem.

Rozhodne, zda je číslo prvočíslo.
n = 7

divisor_count = 0
for i in range(n):
k = i + 1
if n % k == 0:
divisor_count = divisor_count + 1

is_prime = divisor_count == 2

print(is_prime)

V těle cyklu může být další cyklus. Předchozí program rozhodující o tom,
zda je číslo prvočíslo, můžeme upravit tak, aby vytiskl všechna prvočísla menší
nebo rovno než zadané číslo:

Vytiskne všechna prvočísla menší nebo rovno než zadané číslo.
m = 1000

for j in range(m):
n = j + 1
divisor_count = 0
for i in range(n):
k = i + 1
if n % k == 0:
divisor_count = divisor_count + 1

is_prime = divisor_count == 2
if is_prime:
print(n)

Před zadáním úkolů si rozšíříme příkaz tisku o možnost vytisknout více hod-
not na jeden řádek. Pokud v1, . . . , vn jsou výrazy, pak

print(v1,,. . .,vn)

je rozšíření příkazu tisku. Příkaz se vykoná tak, že postupně vyhodnotí vý-
razy v1, . . . , vn a hodnoty vytiskne za sebe oddělené mezerou. Například

27

>>> print(1+1, 2, True or True)
2 2 True

Speciálním případem je použití příkazu tisku bez výrazů vi. Příkaz print()
pouze vytiskne prázdný řádek.

>>> print()

>>>

Úkol 3.1. Je dán první člen a1 a rozdíl mezi sousedními členy d aritmetické
posloupnosti. Vytiskněte prvních n členů této posloupnosti.

Úkol 3.2. Sečtěte prvních n členů aritmetické posloupnosti dané prvním členem
a1 a rozdílem sousedních členů d. Nesmíte použít součtový vzorec.

Úkol 3.3. Vytiskněte všechny dělitele dvou zadaných přirozených čísel.

Úkol 3.4. Rozhodněte, zda jsou dvě zadaná přirozená čísla nesoudělná.

Úkol 3.5. Je dáno přirozené číslo n. Vytiskněte všechna přirozená čísla menší
než n, která jsou s n nesoudělná.

Úkol 3.6. Vytiskněte všechny trojce a, b, c přirozených čísel menších než zadané
číslo, pro které platí a2 + b2 = c2.

Úkol 3.7. Jsou dána přirozená čísla n a m > 2. Rozhodněte, zda existují
přirozená čísla a, b, c menší nebo rovno než n a přirozené číslo k větší než 2 a
menší nebo rovno než m taková, že ak + bk = ck. (Podle Velké Fermatovy věty
musí být odpověď vždy záporná.)

Úkol 3.8. Prvočíselné dvojče je prvočíslo, které je buď o dva větší, nebo o dva
menší než jiné prvočíslo. Vytiskněte každé prvočíselné dvojče menší nebo rovno
než zadané číslo.

Úkol 3.9. Spočítejte faktoriál n! zadaného čísla n. Faktoriál nuly je jedna 0! = 1
a pro faktoriál nenulového n platí n! = n · (n− 1)!.

Úkol 3.10. Je dáno přirozené číslo n. Vytiskněte prvních n prvků Fibonacciho
posloupnosti. První dva prvky posloupnosti jsou nula a jedna. Každý další prvek
je součtem dvou předchozích prvků.

Úkol 3.11. Je dáno přirozené číslo n a celá čísla a0 a q. Vypište prvních n členů
geometrické posloupnosti začínající prvkem a0 a s kvocientem q.

Úkol 3.12. Vraťte součet prvních n členů geometrické posloupnosti začínající
celým číslem a0 s kvocientem q bez použití součtového vzorce.

28

3.3 Tisk řetězce znaků
Nejprve si zavedeme nový typ hodnot: řetězce. Řetězce jsou hodnoty, které ucho-
vávají posloupnosti znaků. Můžeme je vložit do programu podobně jako čísla ve
formě literálů tak, že do apostrofů umístíme znaky řetězce. Přesněji pokud s je
posloupnost znaků, pak

's'

je řetězec. Podobně jako číslo i řetězec je výraz a jelikož se jedná o hodnotu,
vyhodnocuje se sám na sebe. Proto například platí

>>> 'Python'
'Python'

Výraz 'Python' vytvoří řetězec obsahující šest znaků: P, y, t, h, o, n. Mů-
žeme vkládat i znaky s diakritikou:

'Příliš žluťoučký kůň úpěl ďábelské ódy.'

Jak vidíme, řetězec může obsahovat i mezery. Některé znaky můžeme vlo-
žit pouze pomocí takzvané escape sekvence. Například znak apostrofu vložíme
znaky \'. Tedy '\'' je řetězec délky jedna obsahující apostrof. Dále máme sek-
venci \n pro nový řádek a sekvenci \\ pro zpětné lomítko. Nový řádek je tedy
jeden znak v řetězci.

>>> print('a\nb')
a
b

Speciálním případem je řetězec ''. Jedná se o řetězec, který neobsahuje
žádný znak.

Alternativně lze zadat řetězec umístěním jeho znaků do uvozovek:

>>> "Python"
'Python'

Tisk řetězce používá přednostně apostrofy, ale v případě, že řetězec obsahuje
apostrof a neobsahuje uvozovky použijí se k tisku uvozovky:

>>> '\''
"'"

Při použití uvozovek k zadání řetězce je samozřejmě potřeba uvozovky v
řetězci zadávat escape sekvencí:

>>> "Karel řekl: \"Vida, prší.\""
'Karel řekl: "Vida, prší."'

29

Zatím si nepředstavíme žádné operátory pracující s řetězci. Řetězce budeme
používat pouze k tisku.

Pokud chceme v příkazu tisku zamezit tisku nového řádku použijeme násle-
dující jeho formu. Pro výrazy v1, . . . , vn je výraz

print(v1, . . ., vn, end='')

forma příkazu tisku, která při vykonání po tisku hodnot nevytiskne nový
řádek. Například:

>>> print(1, end='')
1>>>

Následující program vytiskne čtverec hvězdiček o hraně n.

Vytiskne čtverec hvězdiček o zadané hraně.
n = 10

for i in range(n):
for j in range(n):
print('*', end='')

print('')

Výstup programu je:

Úkol 3.13. Pro zadanou délku vytiskněte čtverec hvězdiček s prázdným vnitř-
kem. Například pro 5 program vytiskne

* *
* *
* *

Úkol 3.14. Pro zadané přirozené číslo n vytiskněte pravoúhlý rovnoramenný
trojúhelník hvězdiček s rameny délky n.

30

*
**

Úkol 3.15. Pro zadaný počet pater vytiskněte trojúhelník hvězdiček podobný
níže uvedenému. Například pro pět pater vypadá trojúhelník takto:

*

Úkol 3.16. Pro zadané přirozené číslo n, vytiskněte z hvězdiček diamant, který
bude mít n ·2+1 pater. Například pro číslo tři má diamant sedm pater a vypadá
následovně.

*

*

4 Čtvrtý seminář

4.1 Rozšířený příkaz přiřazení
Vezměme si jednoduchý program, který číslo zvětší o jedna.

n = 5
n = n + 1
print(n)

Zde příkaz n = n + 1 zvýší hodnotu proměnné n o jedna. Zvýšení hodnoty
proměnné o libovolnou hodnotu můžeme provést úsporněji následujícím příka-
zem. Pokud i je jméno proměnné a v je výraz, tak

i += v

je rozšířený příkaz přiřazení. Vykonání příkazu proběhne stejně, jako bychom
napsali:

i = i + v

31

Výše uvedený program můžeme tedy přehledněji napsat následovně.

n = 5
n += 1
print(n)

Podobně lze použít rozšířený příkaz přiřazení pro všechny binární operátory.
Přesněji je-li i jméno proměnné, o jeden z operátorů +, -, *, // nebo % a v výraz,
pak

i o= v

je rozšířený příkaz přiřazení. Vykonání příkazu proběhne stejně, jako by byl
místo něj uveden příkaz:

i = i o v

Co vytiskne následující program?

n = 1
n += 1
n **= 3
n //= 2
n -= 1
n *= 2
n %= 4
print(n)

4.2 Podmínečné opakování
Vraťme se k tisku cifer trojciferného čísla:

n = 123

n1 = n

c = n1 % 10
n1 = n1 // 10
print(c)

c = n1 % 10
n1 = n1 // 10
print(c)

c = n1 % 10
n1 = n1 // 10
print(c)

32

S použitím rozšířeného příkazu přiřazení lze program přepsat takto:

n = 123

n1 = n

c = n1 % 10
n1 //= 10
print(c)

c = n1 % 10
n1 //= 10
print(c)

c = n1 % 10
n1 //= 10
print(c)

K dalšímu zjednodušení můžeme použít příkaz for cyklu:

n = 123

n1 = n
for i in range(3):
c = n1 % 10
n1 //= 10
print(c)

Co když budeme chtít program upravit tak, aby vytiskl všechny cifry zada-
ného čísla? Narazíme na problém, že neumíme získat počet cifer čísla. Program
bychom rádi upravili tak, aby tělo cyklu probíhalo, dokud bude číslo n1 nenu-
lové. Za tímto účelem zavedeme následující příkaz.

Pokud v je podmínka a b blok, pak

while v:
b

je příkaz podmíněného opakování, nebo-li příkaz while cyklu. Podobně jako
příkaz for cyklu, se jedná o složený příkaz s jednou klauzulí while. Příkaz se
vykoná tak, že se opakuje následující. Nejdříve se vyhodnotí podmínka v. Pokud
je podmínka pravdivá, vykoná se blok b, jinak se vykonávání příkazu ukončí.

S použitím příkazu podmíněného opakování můžeme náš program napsat
takto:

n = 123

n1 = n

33

while n1 != 0:
c = n1 % 10
n1 //= 10
print(c)

Cyklus zde nejdříve zkontroluje, zda n1 je nenulové. Pokud by n1 bylo nula,
pak by program skončil. Jinak do proměnné c uloží poslední cifru n1, z n1
odstraní poslední cifru a cifru c vytiskne. Vše funguje díky tomu, že z čísla n1
postupně ubývají cifry až nakonec získáme nulu.

Všimněte si, že program nefunguje pro číslo nula. Dokážete ho spravit?
Cyklus while do programů může přinést nový druh chyb. Dosud programy

vždy skončily. Nyní se může stát, že program bude počítat navždy a nikdy
neskončí. Triviální příklad takového programu je:

while True:
print(0)

Program po spuštění bude donekonečna tisknout nuly. Říkáme, že program
cyklí. Jeho činnost musíte v terminálu ukončit kombinací kláves Ctrl+C.

Ne vždy je pád do nekonečné smyčky takto průzračný. Vezměme si na ukázku
následující program.

n = 10

n1 = n
while n1 != 0:
print(n1)
n1 -= 2

Zdá se, že program tiskne čísla menší nebo rovno než zadané číslo a přitom
každé druhé vynechává. Co se ale stane, když jej spustíme pro devítku? Program
vytiskl:

9
7
5
3
1

Pak přeskočil nulu a pokračuje dále

-1
-3
-5
-7

směřujíce k zápornému nekonečnu. Program tedy někdy skončí a jindy cyklí.
Chyba je v podmínce n1 != 0. Dokážete ji spravit tak, aby program vždy skon-
čil?

Vezměme si obecný příklad for cyklu:

34

for i in range(v):
b

Zde i je jméno proměnné, v výraz a b blok. Předpokládejme, že blok b nemění
hodnotu proměnné i a nepoužívá proměnnou n. Pak cyklus for můžeme přepsat
pomocí cyklu while následovně.

n = v
i = 0
while i < n:
b
i += 1

Například program

for i in range(5):
print(i)

lze ekvivalentně zapsat takto:

n = 5
i = 0
while i < n:
print(i)
i += 1

Cyklus while nemůžeme obecně přepsat na cyklus for a to z toho důvodu,
že cyklus for narozdíl od cyklu while vždy skončí. Konečnost vykonávání for
cyklu je velikou výhodou. Proto se budeme snažit tam, kde je to možné, upřed-
nostnit for cyklus před while cyklem. Lze říci, že for cyklus používáme, když
známe dopředu počet opakování.

Vraťme se k rozhodování, zda je číslo prvočíslem:

n = 5

is_prime = True
for i in range(n - 2):
j = i + 2
if n % j == 0:
is_prime = False

print(is_prime)

Pro číslo tisíc program už po první iteraci ví, že není prvočíslo (podmínka
1000 % 2 == 0 je pravdivá), ale přesto pokračuje zbytečně dál. Pojďme pro-
gram upravit tak, aby skončil, jakmile zjistí, že číslo není prvočíslem. Nejprve
přepíšeme for cyklus while cyklem:

35

n = 5

is_prime = True
j = 2
while j < n:
if n % j == 0:
is_prime = False

j += 1

print(is_prime)

Nyní již stačí upravit podmínku cyklu:

n = 5

is_prime = True
j = 2
while j < n and is_prime:
if n % j == 0:
is_prime = False

j += 1

print(is_prime)

Následuje několik úkolů na procvičení podmíněného opakování.

Úkol 4.1. Vraťte ciferný součet přirozeného čísla.

Úkol 4.2. Vraťte cifraci přirozeného čísla. Cifrace čísla n je číslo n v případě,
že n je jednociferné. V opačném případě je to cifrace ciferného součtu čísla n.
Například pro 99, nejprve spočítáme ciferný součet 9 + 9 = 18, protože 18 není
jednociferné číslo, proces opakujeme. Ciferný součet čísla 18 je 1+8 = 9 a to je
i výsledek cifrace.

Úkol 4.3. Vytiskněte rozklad přirozeného čísla na prvočísla.

Úkol 4.4. Je dáno přirozené číslo. Vraťte číslo jehož cifry jsou cifry daného
čísla čtené pozpátku.

Úkol 4.5. Rozhodněte, zda je libovolné přirozené číslo palindrom.

Úkol 4.6. Vraťte celou část logaritmu přirozeného čísla o daném základu.

Úkol 4.7. Rozhodněte, zda jsou dvě čísla nesoudělná. Ukončete program, jakmile
zjistíte netriviálního dělitele.

Úkol 4.8. Je dán počet cifer n. Vytiskněte všechna n-ciferná čísla.

Úkol 4.9. Vraťte počet cifer zadaného přirozeného čísla.

36

Úkol 4.10. Jsou dána přirozená čísla n a k, kde k ≤ n. Vraťte nejmenšího
dělitele čísla n, který je větší nebo rovno než číslo k.

Úkol 4.11. Je dáno číslo n. Vytiskněte prvních n dokonalých čísel. Číslo k je
dokonalé, jestliže součet dělitelů k menších než k je roven k. Například šestka
je dokonalé číslo, protože 6 = 1 + 2 + 3.

Úkol 4.12. Pomocí Eukeidova algoritmu spočítejte největšího společného děli-
tele dvou čísel.

Úkol 4.13. Za použití řešení předchozího úkolu spočítejte nejmenší společný
násobek dvou čísel.

Úkol 4.14. Vraťte celou část odmocniny nezáporného čísla.

Úkol 4.15. Upravte rozhodování prvočíselnosti tak, aby program zkoušel jen
čísla menší než odmocnina z daného čísla. Využijte výsledek z předchozího úkolu.

5 Pátý seminář

5.1 Přerušení iterace
Někdy by bylo výhodné přerušit iteraci způsobenou příkazem cyklu for. Vraťme
se opět k testu prvočíselnosti.

n = 7

is_prime = True
for i in range(n - 2):
j = i + 2
if n % j == 0:
is_prime = False

print(is_prime)

Pokud chceme cyklus přerušit v momentě, kdy narazíme na netriviálního
dělitele, museli bychom jej nyní přepsat na while cyklus. Nepříjemné by ale bylo,
že bychom ztratili záruku konečného vykonávání, kterou cyklus for přináší.
Proto si zavedeme nový příkaz break nazývaný příkaz přerušení cyklu, který lze
použít v těle for cyklu. Příkaz přerušení cyklu se vykoná tak, jak ostatně název
napovídá, že se okamžitě ukončí nejvnitřnější cyklus, ve kterém se vykonávání
nachází.

Program můžeme tedy s úspěchem přepsat takto:

n = 7

is_prime = True
for i in range(n - 2):

37

j = i + 2
if n % j == 0:
is_prime = False
break

print(is_prime)

Nyní se po nalezení netriviálního dělitele cyklus ukončí.
Příkaz ukončení cyklu se musí nacházet v těle cyklu. Proto spuštění programu

print(1)
break
print(2)

končí chybou SyntaxError: 'break' outside loop. Všimněte si, že se
jedná o chybu zápisu, která se odhalí ještě před spuštěním programu.

Vezměme si nyní následující program, který tiskne dvojce nezáporných čísel
menších než zadané číslo.

n = 10

for i in range(n):
for j in range(n):
print(i, j)

Co když budeme chtít program upravit tak, aby první číslo bylo menší nebo
rovno než druhé číslo. První verze by byla následující.

n = 10

for j in range(n):
for i in range(n):
if i <= j:
print(i, j)

Za použití větvení tiskneme jen některé dvojce. Tato varianta však není
efektivní, protože zbytečně procházíme spoustu dvojic čísel. Program můžeme
vylepšit vhodně umístěným příkazem přerušení cyklu:

n = 10

for j in range(n):
for i in range(n):
if j < i:
break

print(i, j)

38

Kód funguje, protože break vyskočí z for cyklu s iterační proměnnou i. Je
ale použití příkazu přerušení cyklu nutné? Neumíme program napsat lépe bez
něj? Odpověď je kladná. Můžeme upravit počet opakování vnořeného cyklu:

n = 10

for j in range(n):
for i in range(j + 1):
print(i, j)

Tím jsme zvýšili čitelnost programu. Proto si zavedeme pravidlo, že break
budeme používat pouze v případech, kdy bychom museli jinak přepsat for cyk-
lus na while cyklus.

5.2 Volání funkce
Zastavme se na chvíli u příkazu tisku. Vezměme si například

>>> print(1)
1

Ve skutečnosti tento příkaz volá funkci print s argumentem 1. Obecněji je-li
f jméno funkce a v1, . . . , vn jsou výrazy, pak

f(v1, . . ., vn)

je volání funkce. Každé volání funkce je výrazem. Za názvem funkce f ne-
píšeme mezeru, ale za každou čárkou oddělující podvýrazy ano. Výraz se vy-
hodnotí tak, že se postupně vyhodnotí výrazy v1, . . . , vn tím získáme hodnoty
h1, . . . , hn. Poté zavoláme funkci f s argumenty h1, . . . , hn. Volání funkce vrátí
hodnotu, která je i hodnotou výrazu volání funkce.

Následující příkazy jsou výrazy volající funkci print.

print(1, 2, 3)
print()
print(1, end='')

Poslední volání obsahuje takzvaný pojmenovaný argument end, který vo-
lání připouští, ale naše definice jej zatím nepostihuje. Použití pojmenovaného
argumentu si dovolíme pouze u funkce print.

Volání funkce je výraz, musí tedy mít nějakou hodnotu. Podívejme se, jakou
hodnotu má volání funkce print.

>>> print(print(1))
1
None

39

Tisk jedničky provedlo volání print(1), které vrátilo hodnotu None vytiště-
nou následujícím voláním funkce print. Hodnotu None budeme nazývat prázdná
hodnota. Prázdná hodnota je jediná hodnota svého typu (typu prázdné hodnoty).
Připomeňme, že známe hodnoty různého typu. Dosud známé typy jsou čísla,
pravdivostní hodnoty, řetězce a nyní ještě typ prázdné hodnoty. Prázdnou hod-
notu dáváme tam, kde chceme sdělit, že zde ve skutečnosti žádná hodnota není.
To je příklad hodnoty volání (návratové hodnoty) funkce print. V interaktivním
režimu platí, že prázdnou hodnotu interpret ve fázi tisku netiskne. Tedy:

>>> None
>>>

Jméno proměnné nesmí kolidovat s názvem funkce. Proto následující pro-
gram skončí chybou.

print = 1
print(1)

Chybě TypeError: 'int' object is not callable je třeba rozumět tak,
že po změně hodnoty proměnné print na číslo jedna, přestalo být print funkcí
a není již možné tuto funkci zavolat. Názvy funkcí poznáte tak, že se ve studiu
zabarví modře. Zakážeme si tyto názvy používat jako názvy proměnných. Tedy
print je zakázaný název proměnné.

5.3 Práce s řetězci
Dosud umíme pouze řetězce vytvářet tak, že jejich znaky obklopíme uvozov-
kami. Například výraz 'Python' má hodnotu řetězec se znaky Python. Nyní si
ukážeme, jak s řetězci pracovat.

Funkce len bere jako svůj argument řetězec a vrací jeho délku. Například:

>>> len('Python')
6
>>> len('')
0

Jednoprvkový řetězec je znak. Tedy například řetězec 'P' je i znakem.
Pokud vs a vi jsou výrazy, pak

vs[vi]

je výraz indexačního operátoru. Výraz se vyhodnotí tak, že se nejprve vy-
hodnotí výraz vs a tím se získá hodnota hs, pak se vyhodnotí výraz vi a tím se
získá hodnota hi. Jestliže hodnota hs je řetězec a hodnota hi celé nezáporné číslo
menší než délka řetězce hs, pak hodnota indexačního operátoru je (hi + 1)-tý
znak řetězce hs. Říkáme taky znak řetězce hs na indexu hi.

Následují příklady použití.

40

>>> 'Python'[0]
'P'
>>> s = 'Python'
>>> s[0]
'P'
>>> s[5]
'n'

Hodnota výrazu s[0] je tedy první znak řetězce s.
Pokus získat znak na indexu větším nebo rovném než je délka řetězce vede

k chybě.

>>> s[6]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

S pomocí iterace můžeme napsat program tisknoucí všechny znaky zadaného
řetězce.

string = 'Python'

for i in range(len(string)):
print(string[i])

Binární operátor + lze použít k spojování řetězců. Přesněji pokud v1 a v2
jsou výrazy jejichž hodnoty jsou řetězce s1 a s2, pak hodnota v1 + v2 je řetězec
vzniklý spojením řetězců s1 a s2. Proto

>>> 'Py' + 'thon'
'Python'

Operátor + slouží jak k sčítání čísel, tak k spojování řetězců. Oba operandy
však musí být buď řetězce, nebo čísla. Proto získání hodnot následujících výrazů
skončí chybou:

>>> '1' + 1
TypeError: can only concatenate str (not "int") to str
>>> 1 + '1'
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Výpis chyb je zkrácený pouze na chybovou hlášku.
Následující program otočí pořadí znaků v zadaném řetězci.

string = 'Python'

reverse = ''

41

for i in range(len(string)):
reverse = string[i] + reverse

print(reverse)

Operátory == a != lze použít k porovnávání řetězců. Přitom dva řetězce jsou
stejné, pokud mají stejnou délku a znaky na odpovídajících indexech se rovnají.
Proto

>>> string = 'Python'
>>> string == 'Python'
True
>>> 'p' != 'P'
True
>>> 'python' == 'Python'
False

Všimněte si, že porovnávání je citlivé na velikost písmen. Ve skutečnosti
můžeme porovnávat na rovnost čísla a řetězce.

>>> 1 == '1'
False
>>> '1' != 1
True

Platí, že hodnoty různých typů se nerovnají.
Otočení řetězce v kombinaci s porovnáváním řetězců můžeme použít k roz-

hodnutí, zda je program palindrom

string = 'kobylamamalybok'

reverse = ''
for i in range(len(string)):
reverse = string[i] + reverse

is_palindrom = string == reverse

print(is_palindrom)

Program lze napsat i bez otáčení řetězce prostě tak, že porovnáváme odpo-
vídající znaky:

string = 'kobylamamalybok'

is_palindrom = True
string_len = len(string)
i = 0

42

n = string_len // 2
while i < n and is_palindrom:
if string[i] != string[string_len - 1 - i]:
is_palindrom = False

i += 1

print(is_palindrom)

Každému znaku je jednoznačně přiřazené nezáporné číslo. Představíme si
dvě funkce, které převádí mezi sebou znaky a čísla. Funkce chr vrací znak k
zadanému číslu a funkce ord vrací číslo zadaného znaku. Čísla některých znaků
určuje ASCII tabulka. Velká písmena anglické abecedy se začínají číslovat od
65. Tedy například znak A má číslo 65, znak 'L' číslo 76 a poslední znak 'Z'
číslo 90:

>>> ord('A')
65
>>> ord('L')
76
>>> ord('Z')
90

Malá písmena anglické abecedy se číslují od 97:

>>> ord('a')
97
>>> ord('m')
109
>>> ord('z')
122

Tedy malé písmeno má o 32 větší číslo než stejné velké písmeno.
Znaky odpovídající číslicím jsou seřazené podle hodnoty a číslují se od 48:

>>> ord('0')
48
>>> ord('1')
49
>>> ord('5')
53
>>> ord('9')
57

Pro převedení číslice reprezentované jako znak na jednociferné číslo stejné
hodnoty musíme od čísla číslice odečíst 48:

>>> ord('0') - 48
0

43

Podívejme se na program, který převede řetězec napsaný malými písmeny
na velká písmena:

string = 'python'

upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - 32)

print(upper_case)

Následují úkoly na práci s řetězci.

Úkol 5.1. Převeďte řetězec znaků číslic na číslo zapsané těmito číslicemi. Tedy
pro řetězec '456' vraťte číslo 456.

Úkol 5.2. Převeďte zadané číslo na řetězec znaků jeho číslic. Například pro
číslo 123 vraťte řetězec '123'.

Úkol 5.3. Rozhodněte, zda je česká věta zadaná jako řetězec palindrom. Řetězec
neobsahuje diakritická znaménka. Při kontrole ignorujte velikost písmen, mezery
a interpunkci. Tedy řetězec 'Kobyla ma maly bok.' je palindrom.

Úkol 5.4. Vytiskněte všechny slova obsažená v řetězci, kde sousední slova jsou
oddělená mezerou. Například pro 'jablko banán hruška' vytiskněte:

jablko
banán
hruška

Úkol 5.5. Odstraňte nadbytečné mezery z řetězce obsahující českou větu. Na-
příklad pro řetězec ' Kobyla má malý bok. ' vraťte 'Kobyla má malý bok.'.

Úkol 5.6. Vytiskněte indexy všech výskytů řetězce p v řetězci s. Například pro
řetězec p roven štros a s roven
'Pštros s pštrosicí a pštrosáčaty šli do pštrosačárny.' vytiskněte:

1
10
22
41

Co program vytiskne, když bude p rovno prázdnému řetězci? Je to správně?

Úkol 5.7. Pro řetězec s a indexy is a ie vraťte podřetězec řetězce s všech znaků
s indexem i, kde is ≤ i < ie. Například pro s rovno 'Python', is rovno 2 a ie
rovno 5 vraťte 'tho'. Co když nebudete předpokládat, že is ≤ ie?

Úkol 5.8. Rozhodněte, zda dva řetězce obsahují stejné znaky, když máte po-
voleno porovnávat pouze řetězce délky jedna (znaky).

44

Úkol 5.9. Pro zadané řetězce s, sp, st, kde sp není prázdný, vraťte řetězec, který
vznikne z řetězce s tak, že se všechny výskyty řetězce sp nahradí řetězcem st.
Program pro s rovno 'Dal jsem jablko do košíku.', sp rovno 'jablko' a st
rovno 'hrušku' vrátí 'Dal jsem hrušku do košíku.'. Nahrazení '11' za '2'
v řetězci '111111' musí vrátit '222'. Program musí být schopný i odstraňovat
podřetězce. Tedy například při nahrazení ' ' v '1 23 4 56' řetězcem '' vrátí
'123456'.

Úkol 5.10. Převeďte kladné číslo menší jak sto na zápis v římských číslicích.
Nepoužívejte odčítací pravidla. Tedy 4 je 'IIII'.

Úkol 5.11. Vraťte ke kladnému číslu menšímu jak devadesát jeho zápis v řím-
ských číslicích. Používejte odčítací pravidla. Například pro 14 vraťte 'XIV'.

Úkol 5.12. Vraťte hodnotu řetězce obsahujícího zápis čísla za použití římských
číslic I, V,X a L bez odčítacích pravidel. Tedy pro 'XIIII' vraťte 14.

Úkol 5.13. Převeďte řetězec obsahující zápis přirozeného čísla menšího než
devadesát římskými číslicemi na číslo. Zápis může používat odečítací pravidla.
Například pro 'XLIX' vraťte 49.

Úkol 5.14. Pro přirozené číslo vraťte řetězec cifer jeho zápisu v dvojkové sou-
stavě. Například pro 15 vraťte '1111'.

Úkol 5.15. Převeďte řetězec obsahující zápis čísla v dvojkové soustavě na číslo.
Tedy pro '10101' vraťte 21.

Úkol 5.16. Vytiskněte ASCII znaky a jejich kódy od 32. do 126. znaku včetně.

Úkol 5.17. Je dán řetězec s a nezáporné číslo n. Zašifrujte řetězec s obsahující
pouze malá písmena tak, že každé písmeno posunete v ASCII kódu o n pozic
doprava. Při pokusu vyjít ven z malých písmen se vraťte na začátek. Tedy pova-
žujte 'a' za následníka 'z'. Například řetězec 'mraz' pro n rovno 2 zakódujte
na 'otcb'.

Úkol 5.18. Pokud je potřeba, upravte předchozí program tak, aby mohl zakódo-
vané slovo dešifrovat. Tedy aby pro 'otcb' a −2 vrátil zpět 'mraz'. Nápověda:
Podívejte se, jak funguje zbytek po dělení ze záporného čísla.

6 Šestý seminář

6.1 Konstanty
Začneme převodem slova napsaného malými písmeny na velká písmena.

string = 'python'

upper_case = ''
for i in range(len(string)):

45

upper_case += chr(ord(string[i]) - 32)

print(upper_case)

V programu se vyskytuje záhadná hodnota 32. Když jsme program psali,
věděli jsme co znamená. Při čtení programu za delší dobu však její význam
nemusí být zřejmý. Jedna možnost, jak program učinit čitelnější, by byla doplnit
komentář, který by hodnotu vysvětloval. My se však vydáme druhou možností,
která nás nabádá k tomu si hodnotu pojmenovat.

Zavedeme si tedy proměnnou letters_distance s hodnotou 32.

string = 'python'

letters_distance = 32
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - letters_distance)

print(upper_case)

Z názvu je zřejmé, že proměnná vyjadřuje vzdálenost mezi písmeny. Z povahy
programu už nás trkne, že se jedná o vzdálenost čísel malých a velkých písmen.

Proměnná letters_distance je výjimečná v tom, že se po běhu programu
nemění její hodnota. Takovým proměnným budeme říkat konstanty a budeme
je psát velkými písmeny.

string = 'python'

LETTERS_DISTANCE = 32
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - LETTERS_DISTANCE)

print(upper_case)

Ještě můžeme učinit jeden krok k zlepšení čitelnosti programu, kterým je
doplnit výpočet hodnoty konstanty.

string = 'python'

LETTERS_DISTANCE = ord('a') - ord('A')
upper_case = ''
for i in range(len(string)):
upper_case += chr(ord(string[i]) - LETTERS_DISTANCE)

print(upper_case)

Z výpočtu je zřejmé, jakou hodnotu konstanta uchovává.
Zavedeme si pravidlo, které nás povede k tomu si pro hodnoty v programu

zavádět konstanty.

46

6.2 Desetinná čísla
Dosud jsme se zabývali pouze celými čísly. V této části si představíme způ-
sob práce s desetinnými čísly. Například číslo 0, 2 s desetinnou čárkou zadáme
pomocí desetinné tečky.

>>> 0.1
0.1

Aritmetické operátory pracující také s desetinnými čísly.

>>> 0.1 + 0.1
0.2
>>> 0.5 * 0.2
0.1

Celé číslo může být zadáno také jako desetinné číslo s použitím desetinné
tečky a nuly v desetinné čási.

>>> 1.0
1.0

Pokud je jeden z operandů aritmetické operace celé číslo a druhý desetinné
číslo, je celé číslo převedeno na desetinné číslo.

>>> 2 * 0.1
0.2

Výsledek operace s desetinnými čísly je vždy desetinné číslo.

>>> 2 * 0.5
1.0

Zavedeme si nový binární aritmetický operátor dělení (/). Jeho výsledkem
je vždy desetinné číslo.

>>> 4 / 2
2.0
>>> 0.1 / 0.2
0.5

Desetinné číslo také dostaneme při použití operátoru mocniny se záporným
mocnitelem.

>>> 2 ** -3
0.125

Při zadávání desetinných čísel lze použít i vědeckou notaci. Číslo ve tvaru
a× 10b zapíšeme jako

47

aeb

Použitím vědecké notace můžeme v kilogramech pohodlně vyjádřit jak nejmenší
hmotnost atomu 1, 67× 10−27 výrazem 1.67e-27 tak hmotnost sluce 1, 9891×
1030 výrazem 1.9891e30.

Při tisku interpret používá vědeckou notaci pouze pro čísla s větší absolutní
hodnotou exponentu.

>>> 1e-2
0.01
>>> 1.23e2
123.0
>>> 10000000000000000.0
1e+16
>>> 0.00001
1e-05

Počítání s desetinnými čísly je pouze přibližné. Proto s překvapením zjistíme,
že podmínka 0.1 + 0.1 + 0.1 == 0.3 není splněná.

>>> 0.1 + 0.1 + 0.1 == 0.3
False

Důvodem je, že interpret uchovává desetinná čísla v binární podobě a to
pouze určitý počet číslic. Problém se vyjasní, když si představíme, že chceme
uchovat číslo 1/3 jako desetinné číslo s určitým počtem platných míst. Můžeme
například říci, že 1/3 se přibližně rovná číslu 0, 333333, které si označíme a. Jistě
nikoho nepřekvapí, že a + a + a není rovno jedné. V binární soustavě nastává
analogický problém. Proto

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

Desetinná čísla budeme porovnávat pouze přibližně. Za tímto účelem si před-
stavíme funkci abs, která vrací absolutní hodnotu zadaného čísla. Funkce jako
argument bere jak celá tak desetinná čísla.

>>> abs(-0.1)
0.1
>>> abs(0.1)
0.1
>>> abs(3)
3
>>> abs(-3)
3

S pomocí funkce abs můžeme napsat program, který rozhodne, zda se dvě
desetinná čísla přibližně rovnají.

48

a = 0.3
b = 0.1 + 0.1 + 0.1

print(abs(a - b) < 1e-10)

Vidíme, že a je přibližně rovno b jestliže je absolutní hodnota jejich rozdílu
menší než určitá tolerance. Zde je tolerance 10−10. Absolutní hodnotě rozdílu
čísel a, b budeme říkat vzdálenost čísel a, b. Proto můžeme říci, že vzdálenost
čísel a, b je menší než tolerance.

Jak nás poučuje předchozí část, měli bychom pro toleranci vytvořit kon-
stantu.

a = 0.3
b = 0.1 + 0.1 + 0.1

PRECISSION = 1e-10
print(abs(a - b) < PRECISSION)

Pro různé programy může být samozřejmě tolerance různá. Jiná bude u
programu stroje operující lidské srdce a jiná u tachometru kola.

Interpret používá pro práci s desetinnými čísly formát čísel s plovoucí dese-
tinnou čárkou. Tento formát se skládá ze tří částí: znaménka, platných číslic a
exponentu. O omezení počtu platných číslic jsme si již řekli. Zbývá dodat, že i
exponent je omezen. Proto existuje největší desetinné číslo

1.7976931348623157e+308

a nejmenší kladné desetinné číslo

5e-324.

Existence největšího desetinného čísla vede k tomu, že pokud by operace
měla vrátit číslo větší než největší možné, tak se vrátí nekonečno nebo dojde k
chybě.

>>> 1e308 * 2
inf
>>> 2.0 ** 10000
OverflowError: (34, 'Result too large')

Stojí za zmínku, že celá čísla horní omezení velikosti teoreticky nemají.

>>> 2 ** 10000
1995063116880758384...

Pokud by výsledek byl blíže nule než nejmenší kladné desetinné číslo, pro-
padne se tento výsledek na nulu.

49

>>> 5e-324 / 2
0.0
>>> (-5e-324) / 2
-0.0

Poznamenejme, že máme zápornou a kladnou nulu.
Při počítání s nekonečnem můžeme narazit na zvláštní hodnotu nan.

>>> inf = 1e+308 * 2
>>> inf / inf
nan

Hodnota nan je zkratka za Not A Number a je hodnotou neurčitých výrazů.
Jako například ∞/∞. Označme si hodnotu nan.

>>> nan = inf / inf

Výsledky operací, kde aspoň jeden z operandů je nan, jsou opět nan.

>>> nan + 1
nan
>>> nan * nan
nan

Hodnota nan se nerovná ničemu dokonce ani sama sobě.

>>> nan == 1
False
>>> nan == nan
False

Přibližné výpočty s desetinnými čísly mají za důsledek to, že pokud bude
sčítanec a o mnoho řádů větší než sčítanec b, pak může být součet a a b roven
a. Například

>>> 10e20 + 1 == 10e20
True

Podobné problémy nastávají i u ostatních aritmetických operací.
Následují úkoly na procvičení práce s desetinnými čísly.

Úkol 6.1. Přibližně převeďte teplotu zadanou jako celé nebo desetinné číslo ve
stupních Fahrenheita na stupně Celsia podle vztahu

c =
5(f − 32)

9
,

kde f je teplota ve stupních Fahrenheita a c ve stupních Celsia. Výslednou
hodnotu uveďte jako desetinné číslo.

50

Úkol 6.2. Použijte vztah zadaný v předchozím úkolu a napište program pře-
vádějící teplotu zadanou ve stupních Celsia na stupně Fahrenheita.

Úkol 6.3. Vytiskněte prvních n členů Fibonacciho posloupnosti. První člen
je roven nule, druhý jedné a každý další je roven součtu dvou předchozích.
Posloupnost tedy začíná 0, 1, 1, 2, 3, 5, 8, . . .

Úkol 6.4. Pro dané přirozené číslo n > 1 vypočítejte přibližnou hodnotu zla-
tého řezu rovnou poměru

an
an−1

,

kde ai je i-tý člen Fibonacciho posloupnosti.

Úkol 6.5. Je dána přesnost d, řekněme 10−10. Předchozí program nám dává
posloupnost stále se zlepšujících odhadů zlatého řezu. Upravte jej tak, aby vý-
počet skončil ve chvíli, kdy se sousední členy odhadů zlatého řezu budou lišit o
méně než d.

Úkol 6.6. Pro dané přirozené číslo n vraťte součet

1

1
+

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

Úkol 6.7. Pro dané přirozené číslo k vraťte n takové, že součet z předchozího
úkolu bude větší nebo roven než k. Teoreticky pro každé k takové n existuje,
prakticky však už pro malé k třeba 15 je n veliké.

Úkol 6.8. Spočítejte přibližnou hodnotu druhé odmocniny desetinného čísla a
pomocí Newtonovy metody. Začněte libovolným odhadem x0. Můžete položit
x0 rovno a. Dále počítejte prvky posloupnosti podle vztahu

xk+1 =
1

2

(
xk +

a

xk

)
Jako výsledek pro zadané n vraťte prvek xn.

Úkol 6.9. Upravte předchozí program tak, aby výpočet skončil ve chvíli, kdy
vzdálenost druhé mocniny odhadu a čísla a bude menší nebo rovna než zadané
d. Skončete tedy ve chvíli kdy

|x2k − a| ≤ d.

Úkol 6.10. Spočítejte přibližně hodnotu čísla π, když víte, že čtvrtina π je
rovna

1− 1

3
+

1

5
− 1

7
+ · · ·

Program bude brát přirozené číslo n a do výpočtu zahrnete jen n členů
výpočtu.

Úkol 6.11. Upravte předchozí program tak, aby se výpočet zastavil ve chvíli,
kdy vzdálenost dvou následujících odhadů bude menší než zadaná přesnost.

51

7 Sedmý seminář

7.1 Funkce
Začněme motivačním příkladem. Vezměme si program, který počítá absolutní
hodnotu čísla.

num = -4

if num < 0:
num *= -1

print(num)

Pokud chceme program spustit s jiným vstupem, musíme změnit hodnotu
proměnné num. To je nešikovné zejména pro testování. Program bychom rádi
otestovali aspoň pro kladnou hodnotu, zápornou hodnotu a nulu. To by zna-
menalo vždy hodnotu změnit a program spustit. Chceme tedy náš kód vykonat
vícekrát s různým vstupem. Za tímto účelem by bylo vhodné mít možnost si část
programu pojmenovat, určit co jsou vstupní proměnné a co je výstupní hodnota.
Právě k tomu slouží uživatelské funkce, které si v této části představíme.

Připomeňme si, že již umíme funkce volat tak, že určíme jméno funkce a
argumenty volání.

>>> len('abc')
3
>>> abs(-2)
2
>>> print(1, 2)
1 2

Funkce určuje počet a typ svých argumentů. Například funkce len bere jeden
argument typu řetězec. Volání funkce je výraz a jako každý výraz musí mít
hodnotu. Například volání len('abc') má hodnotu 3. Této hodnotě říkáme
návratová hodnota volání funkce. Říkáme také, že volání funkce vrací hodnotu.

Funkce, které máme k dispozici od startu programu, nazýváme vestavěné
funkce. Tedy například abs je vestavěná funkce.

Dosud jsme používali pouze vestavěné funkce. Nyní si ukážeme, jak defi-
novat funkce vlastní (nazývané uživatelské funkce). Pokud je f jméno funkce,
p1, . . . , pn jsou názvy proměnných a b blok příkazů, pak

def f(p1, . . ., pn):
b

je příkaz definující uživatelskou funkci. Příkaz definující uživatelskou funkci je
tedy složeným příkazem s jedinou klauzulí def. Proměnným p1, . . . , pn budeme
říkat parametry funkce a bloku b tělo funkce. Příkaz se vykoná tak, že definuje
(uživatelskou) funkci f .

Například

52

def print_sum(a, b):
print(a + b)

definuje uživatelskou funkci print_sum, která má dva parametry a, b.
Jména funkcí nemůžou být jména vestavěných funkcí ani klíčová slova. Při-

pomeňme, že klauzule složených příkazů začínají klíčovým slovem. Například
if, def nebo for jsou klíčová slova. Navíc si musíme dát pozor, aby jména
funkcí byla různá od jmen proměnných, které používáme.

Uživatelskou funkci můžeme zavolat výrazem volání funkce:

f(v1, . . ., vm)

Nejprve se získají hodnoty h1 . . . , hm výrazů v1, . . . , vm. Tím obdržíme m
argumentů volání. Dále se zkontroluje, zda počet parametrů n funkce f se rovná
počtu argumentům. Pokud ne dojde k typové chybě (TypeError). Nyní víme, že
n = m. Následně se nastaví pozičně odpovídající hodnoty parametrů p1, . . . , pn
na argumenty h1, . . . , hn. Nakonec se vykoná tělo funkce f .

Argumenty jsou tedy hodnoty, se kterými funkci voláme, a parametry jsou
názvy proměnných, kterým se hodnoty nastavují.

Například vyhodnocení výrazu

print_sum(1 + 1, 2 + 2)

získá hodnoty 2 a 4 výrazů 1 + 1 a 2 + 2. Protože funkce print_sum bere
dva parametry a my ji voláme s dvěma argumenty, můžeme pokračovat a nasta-
vit hodnotu proměnné a na 2 a hodnotu proměnné b na 4. Nakonec vykonáme
tělo funkce

print(a + b)

To bude mít za následek tisk čísla 6.
Spuštění programu uloženého v souboru f z příkazové řádky příkazem

python3 -i f

přepne po vykonání programu interpret do interaktivního režimu.
Například pokud soubor print_sum.py obsahuje

def print_sum(a, b):
print(a + b)

můžete jej spustit python3 -i print_sum.py a testovat funkci:

>>> print_sum(2, 3)
5
>>> print_sum(1, 0)
1

Pokud zadáme špatný počet argumentů, volání funkce skončí chybou.

53

>>> print_sum(1)
TypeError: print_sum() missing 1 required positional argument: 'b'
>>> print_sum(1, 1, 1)
TypeError: print_sum() takes 2 positional arguments but 3 were given

Návratová hodnota volání uživatelské funkce je zatím prázdná hodnota None.
Návratovou hodnotu můžeme určit následujícím příkazem. Je-li v výraz, pak

return v

je příkaz návratu. Lze jej použít pouze v těle definice funkce. Slovo return je
nové klíčové slovo. Příkaz se vykoná tak, že se ukončí vykonávání těla funkce a
vrátí se hodnota výrazu v. Tedy hodnota výrazu v bude návratovou hodnotou
volání funkce.

Zavedeme si omezení, že příkaz návratu musí být posledním příkazem, který
by tělo funkce bez něj vykonalo. Například následující definice omezení porušuje.

def test(n):
if n == 0:
return 1

return 2

Můžeme ji ale upravit následovně:

def test(n):
if n == 0:
return 1

else:
return 2

Často se budeme setkávat s definicemi funkcí, které jsou tohoto tvaru:

def f(p1, . . ., pn):
b
return v

Vraťme se k našemu příkladu programu počítajícího absolutní hodnotu. Pro-
gram můžeme vyjádřit funkcí:

def my_abs(num):
if num < 0:

num *= -1
return num

Po načtení programu můžeme testovat:

>>> my_abs(-1)
1
>>> my_abs(1)
1
>>> my_abs(0)
0

54

Test můžeme učinit součástí programu:

def my_abs(num):
if num < 0:

num *= -1
return num

print(my_abs (-1))
print(my_abs (1))
print(my_abs (0))

Vidíme, že program se skládá ze dvou částí. V první definujeme funkci, která
určuje počet a jména parametrů, výpočet (tělo funkce) a návratovou hodnotu.
V druhé části tuto funkci voláme a tiskneme návratové hodnoty. Můžeme tedy
náš program zavolat vícekrát a zkontrolovat, zda se chová správně.

Od tohoto okamžiku budou naše programy mít tuto formu. Nejprve tedy
bude uvedena definice funkce a pak příklady volání.

Zatím se omezíme na definici pouze jedné funkce vyjadřující náš program.
To nám zatím stačí. K funkcím se ale budeme vracet v dalších seminářích.

7.2 Seznamy
Začneme programem, který tiskne čísla od nuly do n.

def print_range(n):
for i in range(n):
print(i)

Program funguje tak, že čísla se tisknou na výstup:

>>> print_range(5)
0
1
2
3
4

Tiskem sice posíláme čísla na výstup, ale přicházíme o ně. Co když ale chceme
tato čísla postupně sbírat a dále s nimi pracovat? Za tímto účelem si zavedeme
nový typ hodnot seznam. Jak název napovídá, seznam obsahuje hodnoty a určuje
jejich pořadí. Seznam se v mnohém podobá řetězci. Hlavním rozdílem je, že
oproti řetězci seznam může obsahovat libovolné hodnoty. Zatím se omezíme
na seznamy, které obsahují čísla. Seznam můžeme vytvořit následovně. Jsou-li
v1 . . . , vn výrazy, pak

[v1, . . . , vn]

je výraz popisující seznam. Výrazy v1, . . . , vn určují prvky seznamu. Hodnotou
výrazu je seznam, jehož prvky jsou hodnot výrazů v1 . . . , vn. Oproti množině
seznamy určují pořadí svých prvků a navíc prvky můžou opakovat.

55

Příklady seznamů následují.

>>> [0, 1, 2, 3, 4]
[0, 1, 2, 3, 4]
>>> [1 + 1, 2 * 3]
[2, 6]
>>> [1, 2 - 1, 1 + 1, 2 // 2]
[1, 1, 2, 1]
>>> []
[]

Poslední seznam je takzvaný prázdný seznam, který neobsahuje žádný prvek.
Seznam podobně jako řetězec má svoji délku a prvky seznamu se nacházejí

na určitém indexu. Například [4, 2, 7] je seznam délky tři a na indexu nula
se nalézá prvek 4, na indexu jedna prvek 2 a na indexu dva prvek 7. Prázdný
seznam má nulovou délku.

Operátor + slouží také ke spojování seznamů.

>>> [1] + [2]
[1, 2]
>>> l1 = [2, 3]
>>> l2 = [4]
>>> l1 + l2
[2, 3, 4]
>>> l1 = l1 + [4]
>>> l1
[2, 3, 4]

Poznamenejme, že příkaz

p += v

není pro seznamy ekvivalentní příkazu

p = p + v

Jak následující kód ukazuje, příkaz += má z našeho pohledu zvláštní chování
a proto jej zatím nebudeme používat.

>>> l1 = [1, 2]
>>> l2 = l1
>>> l1 += [3]
>>> l1
[1, 2, 3]
>>> l2
[1, 2, 3]

Přesněji není jasné, proč se změnou hodnoty proměnné l1 změnila i hodnota
proměnné l2. Následující chování je již v pořádku:

56

>>> l1 = [1, 2]
>>> l2 = l1
>>> l1 = l1 + [3]
>>> l1
[1, 2, 3]
>>> l2
[1, 2]

Nyní již můžeme náš úvodní program přepsat tak, aby vracel seznam nezá-
porných čísel menších než n.

def list_range(n):
result_list = []
for i in range(n):

result_list = result_list + [i]
return result_list

V interaktivním režimu dostáváme

>>> list_range(5)
[0, 1, 2, 3, 4]

Nepřekvapí nás, že funkce len a indexační operátor fungují také se seznamy.

>>> l = [3, 2 , 1]
>>> len(l)
3
>>> len([4, 4])
2
>>> l[0]
3
>>> [1, 2, 3][0]
1
>>> [1][0]
1

Můžeme napsat funkci, která sečte hodnoty všech prvků seznamu. Vstupní
proměnnou bychom nejraději pojmenovali list. To ale nemůžeme, protože list
je jméno vestavěné funkce.

def list_sum(input_list):
result = 0
for i in range(len(input_list)):

item = input_list[i]
result += item

return result

Máme například:

57

>>> list_sum([1, 2, 3])
6

Součet prvků prázdného seznamu nám vychází roven nule:

>>> list_sum([])
0

Dva seznamy se rovnají, když mají stejnou délku a prvky na odpovídajících si
indexech se rovnají. K porovnávání seznamů můžeme využít operátory rovnosti
a nerovnosti. Dostáváme

>>> [1, 2, 3] == [1, 2, 3]
True
>>> [1, 2, 3] != [1, 3, 2]
True
>>> [1, 1] == [1]
False
>>> [] == []
True

7.3 Úkoly
Úkol 7.1. Napište funkci, která pro n vrací seznam prvních n prvků Fibonna-
ciho posloupnosti. Pro definici se podívejte na úkol 6.3.

Úkol 7.2. Uměli byste předchozí úkol napsat tak, aby se při výpočtu používaly
poslední dva prvky tvořeného seznamu?

Úkol 7.3. Napište funkci, která pro daný seznam čísel spočítá produkt jeho
prvků. Produkt získáte tak, že vynásobíte všechny prvky seznamu. Co by měla
funkce vrátit pro prázdný seznam?

Úkol 7.4. Napište funkci reverse, která pro seznam s vrátí seznam jehož prvky
budou prvky seznamu s v opačném pořadí. Tedy

>>> reverse([2, 3, 4])
[4, 3, 2]

Úkol 7.5. Naprogramujte funkci sublist, která bere seznam s a indexy if a
it. Funkce vrátí podseznam seznamu s obsahující prvky, jejichž index je větší
nebo rovno než if a menší než it. Například

>>> sublist([5, 4, 3, 2, 1], 0, 3)
[5, 4, 3]

Co funkce vrátí, když it ≤ if?

Úkol 7.6. Bez použití operátorů == a != na porovnávání seznamů napište
funkci, která rozhodne, zda jsou dva seznamy rovny.

58

Úkol 7.7. Napište funkci, která rozhodne, zda je hodnota prvkem seznamu.

Úkol 7.8. Napište funkci, která odstraní všechny výskyty zadané hodnoty ze
seznamu.

Úkol 7.9. Upravte předchozí funkci tak, aby odstranila pouze první výskyt
hodnoty.

Úkol 7.10. Napište funkci, která zjistí, zda je seznam uspořádaný od nejmen-
ších hodnot k největším.

Úkol 7.11. Rozhodněte, zda jeden seznam začíná prvky druhého seznamu.

Úkol 7.12. Odstraňte ze seznamu všechny prvky, které jsou dělitelné zadaným
číslem.

Úkol 7.13. Za použití Eratosthenova síta vraťte všechna prvočísla menší nebo
rovno než dané n. Eratostenovo síto je algoritmus, který probíhá tak, že začnete
se seznamem s čísel od dvou do n. Poté opakujete následující. První prvek
seznamu s je prvočíslo a můžete jej přidat na výstup. Odstraňte ze seznamu
s všechny prvky, které jsou dělitelné číslem a. Opakování ukončete, až bude
seznam s prázdný.

8 Osmý seminář

8.1 Rozdělení programu do funkcí
Pojďme naprogramovat funkci odstraňující duplicity ze zadaného seznamu. Funkci
pojmenujeme remove_duplicates a měla by fungovat následovně.

>>> remove_duplicates ([1, 2, 1, 2, 2])
[1, 2]
>>> remove_duplicates ([])
[]
>>> remove_duplicates ([1, 2, 3])
[1, 2, 3]

Odstraňování duplicit budeme provádět tak, že do proměnné řekněme result
budeme přidávat jen ty prvky vstupního seznamu, které se v ní ještě nenalézají.
Proměnnou, jejíž hodnotu vracíme budeme nazývat výstupní. Začneme kostrou
programu.

def remove_duplicates(input_list):
result = []
...
return result

Přidáme procházení prvků seznamu input_list:

59

def remove_duplicates(input_list):
result = []
for i in range(len(input_list)):

element = input_list[i]
is_member = False
...
if not is_member:

result = result + [element]
return result

Zbývá dodat test, zda je aktuální prvek element přítomen v seznamu result.

1 def remove_duplicates(input_list):
2 result = []
3 for i in range(len(input_list)):
4 element = input_list[i]
5 is_member = False
6 for j in range(len(result)):
7 list_element = result[j]
8 if list_element == element:
9 is_member = True
10 break
11 if not is_member:
12 result = result + [element]
13 return result

Iterace na řádku 3 postupně prochází prvky vstupního seznamu. Iterace na
řádku 6 kontroluje, zda je aktuální prvek přítomen ve výsledku. Pokud není,
větvení na řádku 11 aktuální prvek přidá k výsledku.

Po chvilkové úvaze zjistíme, že řádky 5 až 10 zjišťují, zda je prvek přítomný
v seznamu. Nevýhodou našeho řešení je, že tato skutečnost není na první pohled
zřejmá. Chtěli bychom tuto část kódu pojmenovat a již víme, že za tímto účelem
máme použít uživatelské funkce:

def is_element_member(element , input_list):
is_member = False
for i in range(len(input_list)):

list_element = input_list[i]
if list_element == element:

is_member = True
break

return is_member

Funkci bychom měli otestovat:

>>> is_element_member (1, [1, 2, 1, 4])
True
>>> is_element_member (5, [1, 2, 1, 4])
False

60

>>> is_element_member (5, [])
False
>>> is_element_member (5, [5])
True

Nyní již můžeme nahradit ve funkci remove_duplicates problematický kód
voláním funkce:

def is_element_member(element , input_list):
is_member = False
for i in range(len(input_list)):

list_element = input_list[i]
if list_element == element:

is_member = True
break

return is_member

def remove_duplicates(input_list):
result = []
for i in range(len(input_list)):

element = input_list[i]
if not is_element_member(element , result):

result = result + [element]
return result

Podařilo se nám kód programu učinit přehlednější tím, že jsme jej rozdělili
do více funkcí.

Jak je možné, že při volání funkce is_element_member nepřijdeme o hod-
notu proměnné input_list funkce remove_duplicates, když prvně jmenovaná
funkce má parametr také pojmenovaný input_list?

Při volání funkce se nejprve vytvoří nové prostředí. Nazýváme jej lokální
prostředí. Připomeňme, že prostředí je tabulka, která přiřazuje proměnným je-
jich hodnoty. Hodnoty parametrů funkce se nastavují na argumenty v lokálním
prostředí a tělo funkce se v tomto lokálním prostředí vykonává. Lokální pro-
středí jsou příčinou, proč změna hodnoty proměnné neovlivní hodnotu stejně
pojmenované proměnné mimo tělo funkce.

Ukážeme si příklad.

1 def f1(b):
2 b = b + 1
3 return b
4
5 def f2(b):
6 f1(b)
7 return b
8
9 print(f2(2))

61

Co program vytiskne? Rozebereme si jeho vykonání. Příkazy na řádcích 1 a
5 pouze definují funkce. Samotný program se spustí vyhodnocením výrazu

f2(2)

Vytvoří se první lokální prostředí a v něm se nastaví hodnota proměnné b
na 2:

b 2

Do lokálního prostředí lze nahlédnout zastavením vykonávání na řádku 5.
Lokální prostředí je zobrazené vlevo v části Locals.

Dále dojde k volání funkce f1:

f1(b)

To vytvoří druhé lokální prostředí také s hodnotou 2.

Další příkaz změní hodnotu proměnné b v aktuálním druhém lokálním pro-
středí:

62

Následuje návrat z volání funkce f1 do volání funkce f2 a zde přestává
platit druhé lokální prostředí. První lokální prostředí je nyní aktuální a v něm
je hodnota b stále 2.

Dvojku tedy volání funkce f2 vrátí a proto program vytiskl číslo dva.
Druhou možností, jak se na volání uživatelských funkcí dívat, je si zavést

pojem rozsah proměnné. Rozsah proměnné je část kódu, kde se můžeme dotá-
zat na její hodnotu. Říkáme, že proměnná je platná ve svém rozsahu. O prvním
přiřazení hodnoty do proměnné v těle funkce říkáme, že tuto proměnnou defi-
nuje. To platí pouze, pokud proměnná není parametrem. Vezměme si například
následující program.

1 def f1(a):
2 b = 2
3 a = a + 1
4 b = a + b
5 print(a + b)
6

63

7 f1(3)

Zde řádek dva definuje proměnnou b. Řádek tři proměnnou a nedefinuje,
protože a je parametrem funkce. Ani řádek čtyři nedefinuje proměnnou - ta je
již definovaná.

Parametry funkce a proměnné definované v jejím těle jsou nazývány lokální
proměnné funkce. Tedy předchozí funkce má lokální proměnné a, b.

Rozsahem lokálních proměnných funkce je celé tělo funkce. Například v pro-
gramu

1 def f1(a):
2 b = 2
3 print(a + b)
4
5 f1(3)

jsou rozsahem parametru a i proměnné b řádky dva a tři. Proto při vyhod-
nocení výrazu print(a + b) bude hodnota proměnné a tři (argument funkce)
a hodnota proměnné b dva. Spuštění programu

def f1():
print(a)
a = 2

f1()

skončí chybou

UnboundLocalError: local variable 'a' referenced before assignment.

Rozsahem proměnné a je sice celé tělo funkce f1, ale na řádku dva ještě pro-
měnná nemá hodnotu. Všimněte si rozdílu s chybou v programu:

def f1():
print(a)

f1()

Zde program končí nám známou chybou

NameError: name 'a' is not defined.

Vrátíme se k příkladu s funkcemi f1 a f2:

1 def f1(b):
2 b = b + 1
3 return b
4
5 def f2(b):
6 f1(b)
7 return b
8
9 print(f2(2))

64

Můžeme jej nyní vysvětlit s pomocí rozsahů proměnných. Parametr b funkce
f1 splývá s proměnnou b definovanou na řádku dva. Můžeme tedy říci, že řádek
dva pouze mění proměnnou b. Připomeňme, že parametr funkce je proměnná.
Rozsah proměnné b jsou řádky 2, 3.

Rozsah parametru b funkce f2 jsou řádky 6, 7. Průnik rozsahů parametru b
funkce f1 a rozsahu parametru b funkce f2 je prázdný. Můžeme si tedy předsta-
vit, že se jedná o dvě různé proměnné stejného jména. Přejmenování proměnné
jen v jedné funkci nijak neovlivní funkci druhou.

Změna proměnné b na řádku dva neovlivní hodnotu proměnné b v těle funkce
f2. Získání hodnoty proměnné b na řádku sedm je mimo rozsah proměnné b v
těle funkce f1.

Nyní by již mělo být jasné, proč následující program skončí chybou:

NameError: name 'b' is not defined.

1 def f1():
2 b = 2
3
4 def f2():
5 f1()
6 print(b)
7
8 print(f2())

Proměnná b definovaná na druhém řádku má rozsah pouze řádek dva. Na-
proti tomu proměnná b na řádku šest není ani parametrem ani není v těle funkce
f2 definována.

Vysvětlete, proč i následující program končí chybou:

NameError: name 'a' is not defined.

1 def f1():
2 print(a)
3
4 def f2():
5 a = 2
6 f1()
7
8 f2()

Víme, že po spuštění programu existuje prostředí, které určuje hodnoty pro-
měnných. Tomuto prostředí říkáme globální prostředí. Pokud se hodnota pro-
měnné nenajde v lokálním prostředí, hledá se její hodnota v globálním prostředí.

Proměnnou, jejíž hodnotu měníme mimo definice funkcí, nazýváme globální.
O prvním přiřazení hodnoty do globální proměnné říkáme, že proměnnou de-
finuje. Rozsahem globální proměnné je část kódu nalézající se za její definicí.

65

Pokud by v nějaké části programu byla platná jak lokální tak globální proměnná
stejného jména, má přednost lokální proměnná.

Podívejme se na následující program.

1 c1 = 1
2
3 def f1():
4 c1 = 0
5 print(c1)
6
7 print(c1)
8 f1()
9 print(c1)

Máme zde globální proměnnou c1 jejíž rozsah jsou řádky dva a dále. Dále
se zde nachází lokální proměnná c1, která má rozsah řádky čtyři a pět. Změna
proměnné c1 na řádce čtyři tedy změní jen lokální proměnnou. Hodnota globální
proměnné zůstane stejná. Proto program vytiskne:

1
0
1

Z globálního prostředí si v tělech funkcí dovolíme používat pouze konstanty.

8.2 Seznamy různých hodnot
Dosud jsme pracovali pouze se seznamy jejichž prvky byly celá čísla. Nic nám
nebrání udělat seznam z libovolných hodnot. Můžeme tedy vytvořit seznam
řetězců:

['jedna', 'dvě', 'tři']

pravdivostních hodnot:

[True, False, True]

nebo desetinných čísel:

[0.1, 12.4, 1e-20]

Dokonce můžeme i vytvořit seznam, kde každý prvek je jiného typu:

['Hráč jedna', 45, True]

Jelikož seznam je také hodnota, může být i on prvkem jiného seznamu.

>>> l = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>
>>> l[0]
[1, 2, 3]
>>> l[0][1]
2

66

Všimněte si dvojnásobného použití indexačního operátory v posledním pří-
kladě. Seznam l by mohl reprezentovat následující matici čísel.1 2 3

4 5 6
7 8 9


Napíšeme program tisknoucí matici (bez obklopujících závorek).

def print_cell(element , is_last):
print(element , end='')
if not is_last:
print(' ', end='')

def print_row(row):
for j in range(len(row)):

element = row[j]
is_last = j == len(row) - 1
print_cell(element , is_last)

print ()

def print_matrix(matrix):
for i in range(len(matrix)):

row = matrix[i]
print_row(row)

Zkouška:

>>> print_matrix ([[1, 2, 3], [4, 5, 6]])
1 2 3
4 5 6

8.3 Úkoly
Úkol 8.1. Pro řetězec obsahující slova oddělená mezerou vraťte seznam těchto
slov.

Úkol 8.2. Rozhodněte, zda je jeden seznam podseznamem druhého.

Úkol 8.3. Transponujte zadanou matici. Transponovaná matice vznikne zámě-
nou řádků a sloupců. Například transpozicí matice(

1 2 3
4 5 6

)
vznikne matice 1 4

2 5
3 6

 .

67

Úkol 8.4. Vytvořte jednotkovou matici zadané velikosti. Jednotková matice má
na hlavní diagonále jedničky a jinde nuly. Například jednotková matice velikosti
tři vypadá takto: 1 0 0

0 1 0
0 0 1


Úkol 8.5. Je dán seznam čísel l a přirozené číslo n. Vytvořte seznam délky
n, kde prvek na indexu i je seznam obsahující všechna čísla z l jejichž zbytek
po dělení číslem n je i. Například pro seznam [1, 2, 3, 3, 8, 5, 4] číslo 3
vraťte [[3, 3], [1, 4], [2, 8, 5]].

Úkol 8.6. Vytvořte počáteční stav šachovnice u hry česká dáma. Šachovnici
osm krát osm reprezentujte jako seznam rádků, kde řádek je seznam polí. Nulou
označte prázdné pole, jedničkou bílý kámen a dvojkou černý kámen.

Úkol 8.7. Napište funkci, která vytiskne šachovnici. Prázdná pole tiskněte zna-
kem tečka, bílý kámen písmenem malé o, černý kámen hvězdičkou. Za znakem
pole nechávejte mezeru. Doplňte z obou stran čísla řádků a písmen sloupců.
Tedy počáteční pozice české dámy se vytiskne takto:

a b c d e f g h
8 . o . o . o . o 8
7 o . o . o . o . 7
6 . o . o . o . o 6
5 5
4 4
3 * . * . * . * . 3
2 . * . * . * . * 2
1 * . * . * . * . 1
a b c d e f g h

Úkol 8.8. Napište funkci, která změní zadané pole šachovnice na danou hod-
notu.

Úkol 8.9. Umíte předchozí funkce pracující s šachovnicí upravit tak, aby šlo
konstantou nastavit velikost šachovnice? Například devět krát devět. Dále mů-
žete konstantou určit počet řad obsazených na začátku kameny hráče. Pro čes-
kou dámu to jsou tři řady.

Úkol 8.10. Rozdělte řešení úkolů 3.5 (nesoudělná čísla) a 3.6 (Pythagorejské
trojice) do funkcí.

Úkol 8.11. Rozdělte vhodně řešení úkolu 7.13 (Eratosthenovo síto) do funkcí.

68

9 Devátý seminář
Opakování: zlomky

def make_fract(num , den):
if den == 0:
return num // den

else:
return [num , den]

#print(make_fract (1, 2))

def get_num(fract):
return fract [0]

print(get_num(make_fract (1, 2)))

def get_den(fract):
return fract [1]

print(get_den(make_fract (1, 2)))

def print_fract(fract):
print('make_fract(', end='')
print(get_num(fract), end=', ')
print(get_den(fract), end='')
print(')')

print_fract(make_fract (1, 2))

def are_fracts_equal(fract1 , fract2):
num1 = get_num(fract1)
den1 = get_den(fract1)
num2 = get_num(fract2)
den2 = get_den(fract2)
return num1 * den2 == num2 * den1

print(are_fracts_equal(make_fract (1, 2), make_fract (1, 2)))
print(are_fracts_equal(make_fract (1, 2), make_fract (2, 4)))
print(are_fracts_equal(make_fract (1, 2), make_fract (1, 4)))

def add_fracts(fract1 , fract2):
num1 = get_num(fract1)
den1 = get_den(fract1)
num2 = get_num(fract2)
den2 = get_den(fract2)

69

num_result = num1 * den2 + num2 * den1
den_result = den1 * den2
return make_fract(num_result , den_result)

#print_fract(add_fracts(make_fract (1, 2), make_fract (1, 2)))
#print_fract(add_fracts(make_fract (1, 3), make_fract (1, 2)))

def mult_fracts(fract1 , fract2):
num1 = get_num(fract1)
den1 = get_den(fract1)
num2 = get_num(fract2)
den2 = get_den(fract2)
num_result = num1 * num2
den_result = den1 * den2
return make_fract(num_result , den_result)

print_fract(mult_fracts(make_fract (1, 2), make_fract (2, 1)))

def compute_gcd(n, m):
while m != 0:

tmp = m
m = n % m
n = tmp

return n

print(compute_gcd (6, 8))
print(compute_gcd (10, 15))
print(compute_gcd (8, 9))

def reduce_fract(fract):
num = get_num(fract)
den = get_den(fract)
gcd = compute_gcd(num , den)
return make_fract(num // gcd , den // gcd)

print_fract(reduce_fract(make_fract (5, 10)))
def print_and_add_fracts(fract1 , fract2):

print_fract(add_fracts(fract1 , fract2))

f1 = make_fract (1, 2)
f2 = make_fract (2, 1)
mult_f = mult_fracts(f1, f2)
red_f = reduce_fract(mult_f)
print_fract(red_f)

def add_inverse_fract(fract):

70

num = get_num(fract)
den = get_den(fract)
return make_fract(-num , den)

f1 = make_fract (1, 2)
print_fract(add_fracts(f1 , add_inverse_fract(f1)))

def sub_fracts(fract1 , fract2):
return add_fracts(fract1 , add_inverse_fract(fract2))

print_fract(sub_fracts(make_fract (1, 1), make_fract (1, 3)))

def mult_inverse_fract(fract):
num = get_num(fract)
den = get_den(fract)
return make_fract(den , num)

f1 = make_fract (1, 2)
print_fract(mult_fracts(f1 , mult_inverse_fract(f1)))

def div_fracts(fract1 , fract2):
return mult_fracts(fract1 , mult_inverse_fract(fract2))

print_fract(div_fracts(make_fract (1, 1), make_fract (1, 3)))

10 Desátý seminář

10.1 Rekurze
Již víme, že z těla uživatelské funkce můžeme volat jinou uživatelskou funkci.
To se například děje v následujícím programu počítajícím součet čtverců dvou
čísel:

1 def square(x):
2 return x * x
3
4 def sum_of_squares(x, y):
5 return square(x) + square(y)

Funkce sum_of_squares pro čísla x a y spočítá

x2 + y2.

Skutečně, pro x rovno 3 a y rovno 4 dostáváme

>>> sum_of_squares (3, 4)
25

71

Pokud si na druhý řádek dáme zarážku a spustíme program pro ladění,
můžeme se v levé dolní části pojmenované CALL STACK podívat na to, jaká těla
funkcí se vykonávají:

První funkce square je aktuálně vykonávaná funkce. Pod ní se nalézá funkce
sum_of_squares, která funkci square volala. Kliknutím na sum_of_squares se
zvýrazní řádek, kde k volání došlo:

72

Tedy funkce sum_of_squares volá funkci square.
Abychom lépe viděli, co se při vykonávání odehrává, doplníme si do funkcí

tisk hlášek. Jednu hlášku vytiskneme před provedením výpočtu a druhou těsně
před vrácením hodnoty.

def square(x):
print('Calling square with', x)
result = x * x
print('Result of calling square with', x, 'is', result)
return result

def sum_of_squares(x, y):
print('Calling sum_of_squares with', x, 'and', y)
result = square(x) + square(y)
print('Result of calling sum_of_squares with', x, 'and', y,

'is', result)
return result

Hlášky po zavolání funkce vypadají následovně.

>>> sum_of_squares(3, 4)
Calling sum_of_squares with 3 and 4
Calling square with 3
Result of calling square with 3 is 9
Calling square with 4

73

Result of calling square with 4 is 16
Result of calling sum_of_squares with 3 and 4 is 25
25

Vidíme, jak se dvakrát při volání funkce sum_of_squares volala funkce
square. Volání uživatelské funkce při vykonávání uživatelské funkce se nazývá
zanořené. Můžeme také mluvit o úrovni zanoření. Volání uživatelské funkce
z globálního prostředí má úroveň zanoření jedna. Volání uživatelské funkce v
rámci vykonávání těla uživatelské funkce má o jedna větší úroveň než její vo-
lání. Například volání square v rámci sum_of_squares při vyhodnocení výrazu
sum_of_squares(3, 4) má úroveň zanoření dva. Jistě si dokážete představit
program, jehož vykonávání by probíhalo v úrovni zanoření tři.

Zdůrazněme, že úroveň zanoření je vlastnost stavu interpretu při vykonávání
programu. Při vykonávání programu se tedy úroveň zanoření mění.

Podívejme se na další příklad. Předpokládejme na chvíli, že chceme sečíst
dvě nezáporná celá čísla, ale umíme pouze přičíst jedničku nebo odečíst jedničku
od kladného čísla. Tedy chceme napsat funkci add, která bude brát dvě čísla jako
argumenty a vracet jejich součet. Například

>>> add(2, 3)
5
>>> add(1, 5)
6
>>> add(6, 0)
6

Všimněte si, že pokud je druhý argument nula, může funkce rovnou vrátit první
číslo. V opačném případě můžeme k prvnímu číslu přičíst jedničku, od druhého
jedničku odečíst (tím nezměníme hodnotu součtu) a celý proces opakovat. Vy-
jádřeno prostředky, které máme k dispozici, dostáváme:

def add(n, m):
while m != 0:

n += 1
m -= 1

return n

Sečtení dvou čísel, kde druhé je veliké, může chvíli trvat. Zkuste například
vyhodnotit add(1, 10**7). Pokud by druhý argument byl záporný, výpočet
neskončí nikdy. Tedy vyhodnocování výrazu add(1, -1) bude probíhat do ne-
konečna.

Když bychom ale slepě přepsali výše popsaný proces sčítání, tak fráze „a
celý proces opakovat“ znamená zavolání funkce add, a obdržíme:

def add(n, m):
if m == 0:
return n

else:
return add(n + 1, m - 1)

74

Zde je podezřelé, že funkci add voláme v její definici. Z pohledu vykonávání to
však problém není, protože příkaz definice funkce add pouze vytvoří uživatelskou
funkci add. V momentě zavolání funkce add například příkazem add(2, 2) již
je funkce add k dispozici a může tedy být zavolána z těla funkce jako každá jiná
funkce.

Aby jsme si udělali lepší představu o tom, jak funkce add funguje, přidáme
si do jejího těla tisk argumentů a návratové hodnoty:

1 def add(n, m):
2 print('Calling add with', n, 'and', m)
3 if m == 0:
4 result = n
5 else:
6 result = add(n + 1, m - 1)
7 print('Result of calling add with', n, 'and', m, 'is', result)
8 return result

Nyní vyhodnocení výrazu add(2, 2) vytiskne

Calling add with 2 and 2
Calling add with 3 and 1
Calling add with 4 and 0
Result of calling add with 4 and 0 is 4
Result of calling add with 3 and 1 is 4
Result of calling add with 2 and 2 is 4

Vidíme, že první dvě volání prošly přes else větev a tím se spustilo zavolání
funkce add na 6. řádku. V třetím volání bylo m rovno 0 a vykonala se tedy první
větev, která rozhodla, že výsledek bude čtyři. V tuto chvíli probíhá vykonávání
třech volání funkce add. Tedy funkce add s argumenty 2 a 2 volá funkci add
s argumenty 3 a 1 a ta volá funkci add s argumenty 4 a 0. Na osmém řádku
se vrátí výsledek a skončí poslední (třetí) volání. První a druhé volání pouze
vytisknou hlášku a předají vrácený výsledek.

Říkáme, že funkce je rekurzivní, pokud ve svém těle volá samu sebe. Funkce
add je rekurzivní. O volání funkce v těle funkce řekneme, že se jedná o rekurzivní
volání, pokud se jedná o volání téže funkce v jejímž těle se volání nachází. Na
6. řádku se nalézá rekurzivní volání. (Voláme funkci add v těle funkce add).

Další možnost, jak získat představu o rekurzivních volání je projít si jednot-
livá rekurzivní volání v režimu pro ladění. V části CALL STACK vidíme zanoření
rekurzivních volání.

75

S rekurzí se pojí nový druh chyb:

>>> add(1, 1000)
RecursionError: maximum recursion depth exceeded in comparison

Logicky je sice program v pořádku, ale interpret Pythonu umožňuje pouze
úroveň zanoření tisíc. Ve skutečnosti je tato hodnota o pár jednotek nižší, pro-
tože sám interpret pro svoji činnost nějakou úroveň potřebuje. Všimněte si, že
volání funkce s druhým záporným argumentem nyní nespadne do nekonečné
smyčky, ale skončí chybou:

>>> add(1, -1)
RecursionError: maximum recursion depth exceeded in comparison

Interpret nepozná, zda se jedná o nekonečnou smyčku a nebo o příliš náročný
výpočet.

Některé programy se pomocí rekurze vytvářejí velice snadno. Vezměme si
příklad faktoriálu.

n! =

{
1, pro n = 0;
n · (n− 1)!, jinak.

Tradiční definice by se neobešla bez cyklu:

def factorial(n):
result = 1
for i in range(n):

result *= i + 1
return result

Zkouška:

76

>>> factorial (5)
120

S použitím rekurze lze definici faktoriálu přepsat do programu přímočaře:

def factorial(n):
if n == 0:
return 1

else:
return n * factorial(n - 1)

Výpočet hodnoty faktoriálu podle matematické definice se nyní podobá vý-
počtu prováděném programem. Ukážeme si to na příkladu faktoriálu tří. Podle
definice faktoriálu nejdříve dostáváme

3! = 3·(3−1)! = 3·2! = 3·2·(2−1)! = 3·2·1! = 3·2·1·(1−1)! = 3·2·1·0! = 3·2·1·1,

dále máme

3 · 2 · 1 · 1 = 3 · 2 · 1 = 3 · 2 = 6.

Pro zkoumání programu přidáme tisk hlášek:

def factorial(n):
print('Calling factorial with', n)
if n == 0:

result = 1
else:

result = n * factorial(n - 1)
print('Result of calling factorial with', n, 'is', result)
return result

Výpočet faktoriálu vytiskne:

>>> factorial(3)
Calling factorial with 3
Calling factorial with 2
Calling factorial with 1
Calling factorial with 0
Result of calling factorial with 0 is 1
Result of calling factorial with 1 is 1
Result of calling factorial with 2 is 2
Result of calling factorial with 3 is 6

První část odpovídá výpočtu od 3! až po 3·2·1·1. Druhá část počítá násobení
3 · 2 · 1 · 1. Návratová hodnota volání funkce se zde na rozdíl od předchozího pří-
kladu mění. To je způsobené tím, že se před vrácením hodnoty provede výpočet
používající návratovou hodnotu rekurzivního volání. Konkrétněni na řádce

return n * factorial(n - 1)

77

je návratová hodnota výsledek vynásobení n a návratové hodnoty rekur-
zivního volání. Pokud funkce přímo vrací hodnotu rekurzivního volání, říkáme,
že se jedná o koncovou rekurzi. Výše uvedená rekurzivní funkce add používala
koncovou rekurzi. Dokážete ji přepsat tak, aby se o koncově rekurzivní funkci ne-
jednalo? Oproti ní rekurzivní verze faktoriálu koncově rekurzivní není. Můžeme
jí ale přepsat tak, aby koncově rekurzivní byla:

def factorial_iter(n, result):
if n == 0:
return result

else:
return factorial_iter(n - 1, result * n)

def factorial(n):
return factorial_iter(n, 1)

Museli jsme ale zavést pomocnou funkci factorial_iter a pomocný argu-
ment result, kde se postupně skládá výsledek. Vlastně pomocí rekurze simulu-
jeme první verzi napsanou pomocí cyklů. Pokud je funkce napsaná jen pomocí
cyklů bez rekurze, říkáme, že je iterativní. Tedy simulujeme iterativní verzi po-
mocí rekurze. Proto má pomocná funkce název factorial_iter.

Další kanonický příklad na rekurzi je výpočet Fibonacciho posloupnosti.
Uveďme nejdříve řešení pomocí cyklů:

def fibonacci(n):
a = 0
b = 1
for i in range(n):

c = a + b
a = b
b = c

return a

Funkce počítá (n+ 1)-tý prvek Fibonacciho posloupnosti.

>>> print(fibonacci (10))
55

Zkusme se opřít o matematickou definici:

F (n) =

0, pro n = 0;
1, pro n = 1;
F (n− 1) · F (n− 2)!, jinak.

Vyjádřeno programem dostáváme

def fibonacci(n):
if n == 0:
return 0

elif n == 1:

78

return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)

Program funguje korektně. Problém je, že již pro docela malé vstupy trvá
výpočet překvapivě dlouho. Zkuste si vyhodnotit fibonacci(45).

Program můžeme sice přepsat tak, aby byl efektivnější, ale tím ztratíme
eleganci předchozího řešení a vrátíme se v podstatě k původní verzi:

def fibonacci_iter(n, a, b):
if n == 0:
return a

else:
return fibonacci_iter(n - 1, b, a + b)

def fibonacci(n):
return fibonacci_iter(n, 0, 1)

10.2 Úkoly
Úkol 10.1. Pomocí rekurze vynásobte dvě nezáporná celá čísla. Nemůžete po-
užít operátor násobení. Opřete se o následující definici.

n ·m =

{
0, pro m = 0;
n+ (n · (m− 1)), jinak

Úkol 10.2. Napište předchozí funkci iterativně.

Úkol 10.3. Upravte předchozí funkci tak, aby používala koncovou rekurzi.

Úkol 10.4. Pomocí rekurze spočítejte m-tou mocninu čísla n. Čísla n a m jsou
celá nezáporná. Nemůžete použít operátor mocnění (**).

Úkol 10.5. Co předchozí funkce vrátí jako výsledek 00. Je to správně?

Úkol 10.6. Zkuste ve výpočtu mocniny použít funkci násobení z prvního úkolu.
Porovnejte možnosti velikosti druhého argumentu oproti předchozí verzi.

Úkol 10.7. Přepište výpočet mocniny tak, aby byl koncově rekurzivní.

Úkol 10.8. Napište iterativní výpočet mocniny.

Úkol 10.9. Umíte spočítat mocninu pouze za použití přičtení a odečtení jed-
ničky? Tedy bez obecného sčítání, odčítání, násobení a samozřejmě mocniny.

79

11 Jedenáctý seminář

11.1 Podseznamy
Vezmeme-li seznam, například [1, 2, 3], můžeme indexovat mezery mezi prvky.
Mezera před prvním prvkem bude mít index nula, mezera mezi prvním a dru-
hým prvkem bude mít index jedna, a tak dále. Délka seznamu bude indexem
mezery za posledním prvkem.

Podseznam l2 seznamu l1 můžeme určit dvojicí indexů mezer i a j seznamu
l1. Podseznam l2 budou tvořit právě ty prvky mezi mezerami i a j.

Jistě byste uměli napsat funkci sublist, která by brala seznam a dva indexy
mezer a vracela by jimi určený podseznam:

>>> sublist ([1, 2, 3], 1, 3)
[2, 3]
>>> sublist ([1, 2, 3], 0, 2)
[1, 2]
>>> sublist ([1, 2, 3], 0, 0)
[]

Definice funkce by mohla vypadat následovně.

def sublist(input_list , index_from , index_to):
result = []
for i in range(index_to - index_from):

element = input_list[i + index_from]
result = result + [element]

return result

Podseznam seznamu lze získat jednodušeji pomocí takzvaných řezů. Pokud
v, i a j jsou výrazy, pak

v[i:j]

je výraz řezu (anglicky slice). Hodnota výrazu v je seznam. Hodnoty výrazů i a
j jsou indexy mezer seznamu v. Hodnotou výrazu řezu je podseznam seznamu
v určený indexy i a j. Výše uvedená volání funkce sublist lze přepsat pomocí
řezů:

>>> l = [1, 2, 3]
>>> l[1:3]
[2, 3]
>>> l[0:2]
[1, 2]
>>> l[0:0]
[]

Samozřejmě v ve výrazu řezu může být přímo seznam:

>>> [1, 2, 3][1:3]
[2, 3]

80

Pokud první index i ve výrazu řezu vynecháme, uvažuje se index nula. Pokud
vynecháne druhý index j uvažuje se délka seznamu v. Můžeme vynechat i oba
indexy. Například:

>>> l = [1, 2, 3]
>>> l[:2]
[1, 2]
>>> l[1:]
[2, 3]
>>> l[:]
[1, 2, 3]

11.2 Proměnlivost seznamů
Představme si, že chceme v seznamu nahradit prvek na indexu jiným prvkem.
Můžeme to provést následující funkcí:

def replace_element(input_list , index , element):
result_list = []
for i in range(len(input_list)):
if i == index:

result_element = element
else:

result_element = input_list[i]
result_list = result_list + [result_element]

return result_list

S pomocí řezů můžeme funkci napsat jednodušeji:

def replace_element(input_list , index , element):
return input_list [:index] + [element] + input_list[index + 1:]

Vezmeme si seznam

>>> l1 = [1, 2, 3]

zavedeme si jinou proměnnou s hodnotou l1:

>>> l2 = l1

pokud provedeme nahrazení prvku:

>>> l1 = replace_element(l1 , 1, 5)

Vidíme, že se změnila jen hodnota l1:

>>> l1
[1, 5, 3]
>>> l2
[1, 2, 3]

Změnit prvek seznamu můžeme i následujícím příkazem. Pokud l, i a v jsou
výrazy, pak

81

l[i] = v

je příkaz změny prvku seznamu. Hodnotou l je seznam, hodnotou i je index
prvku seznamu l, hodnota v je libovolná. Příkaz změní prvek seznamu l na
indexu i na hodnotu v. Příklad volání:

>>> l = [1, 2, 3]
>>> l[1] = 5
>>> l

[1, 5, 3]

Oproti předchozímu případu dojde opravdu ke změně prvku seznamu. Před-
chozí případ vytvořil nový seznam, který měl jen jeden prvek jiný. Skutečně:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> l1[1] = 5
>>> l1
[1, 5, 3]
>>> l2
[1, 5, 3]

Narozdíl od předchozího případu, došlo i ke změně seznamu l2. Ve skutečnosti
se změnil jen jeden seznam, ale hodnota proměnné l1 je totožná s hodnotou
proměnné l2. Jak porovnávat totožnost?

Pokud v1 a v2 jsou výrazy, pak

v1 is v2

je výraz porovnání totožnosti. Totožnost nás zajímá pouze u seznamů - ty
jediné umíme měnit, proto budeme předpokládat, že hodnoty v1 a v2 jsou se-
znamy. Hodnota výrazu porovnání totožnosti je pravda, pokud seznamy v1 a v2
jsou totožné, jinak je hodnota nepravda.

Podívejme se na příklad:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> l3 = [1, 2, 3]
>>> l1 is l2
True
>>> l1 is l3
False

Vidíme, že seznamy l1 a l3 nejsou totožné a to i přesto, že jsou si všechny
seznamy rovny:

>>> l1 == l2
True
>>> l2 == l3
True

82

Ve skutečnosti l1 a l2 jsou různé názvy pro tu samou hodnotu, l3 je jiná
hodnota, která je pouze rovna (ekvivalentní) seznamům l1 a l2. Proto změna
l1 změní i hodnotu l2 ale nezmění hodnotu l3:

>>> l1[1] = 5
>>> l1
[1, 5, 3]
>>> l2
[1, 5, 3]
>>> l3
[1, 2, 3]

Pokud bychom chtěli hodnotu l1 změnit a neovlivnit hodnotu l2, musíme
udělat kopii hodnoty l1. Toho lze docílit například řezem:

>>> l1 = [1, 2, 3]
>>> l2 = l1[:]
>>> l1[1] = 5
>>> l1
[1, 5, 3]
>>> l2
[1, 2, 3]

Problém může nastat, pokud hodnoty seznamu jsou zase seznamy:

l1 = [[1, 2], [3, 4]]
l2 = l1[:]
l1 [0][0] = 5
>>> l1
[[5, 2], [3, 4]]
>>> l2
[[5, 2], [3, 4]]

Vidíme, že kopie seznamu není dostačující. Ke kopii prvků seznamu nedošlo:

>>> l1 is l2
False
>>> l1[0] is l2[0]
True

Problém vyřešíme funkcí kopírující i prvky seznamu:

def copy_matrix(matrix):
new_matrix = []
for i in range(len(matrix)):

row = matrix[i]
new_row = row [:]
new_matrix = new_matrix + [new_row]

return new_matrix

Test potvrdí dostatečnost kopírování:

83

>>> l1 = [[1, 2], [3, 4]]
>>> l2 = copy_matrix(l1)
>>> l1 == l2
True
>>> l1 is l2
False
>>> l1[0] is l2[0]
False
>>> l1 [0][0] = 5
>>> l1
[[5, 2], [3, 4]]
>>> l2
[[1, 2], [3, 4]]

Možnost změny seznamu umožňuje funkcím měnit své argumenty. Vezměme
si například funkci

def set_element(input_list , index , element):
input_list[index] = element

Potom máme:

>>> l = [1, 2, 3]
>>> l
[1, 2, 3]
>>> set_element(l, 1, 5)
>>> l
[1, 5, 3]

Zavolání funkce způsobilo změnu seznamu l.
Podívejme se na kód, který přidá prvek nakonec seznamu:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> l1 = l1 + [4]
>>> l1
[1, 2, 3, 4]
>>> l2
[1, 2, 3]

Seznam l2 zůstal bez změny. Pro přidání prvku si můžeme napsat funkci:

def append_element(input_list , element):
return input_list + [element]

Zkouška:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> l1 = append_element(l1 , 4)
>>> l1

84

[1, 2, 3, 4]
>>> l2
[1, 2, 3]

Zavedeme si nový příkaz měnící seznam. Pokud l je proměnná, jejíž hodnota
je seznam, a v je výraz, jehož hodnota je seznam, pak

l += v

je příkaz přidání prvků nakonec seznamu. Příkaz přidá prvky seznamu v
nakonec seznamu l. Dojde tedy ke změně seznamu l. Test:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> l1 += [4]
>>> l1
[1, 2, 3, 4]
>>> l2
[1, 2, 3, 4]

Tato verze funkce přidání prvku nakonec seznamu tedy seznam mění:

def append_element(input_list , element):
input_list += [element]

Což vidíme zde:

>>> l1 = [1, 2, 3]
>>> l2 = l1
>>> append_element(l1 , 4)
>>> l1
[1, 2, 3, 4]
>>> l2
[1, 2, 3, 4]

11.3 Úkoly
Úkol 11.1. Napište iterativně funkci replace, která bere seznam l a dvě hod-
noty v1 a v2. Funkce nahradí v seznamu l každý výskyt hodnoty v1 za hodnotu
v2. Funkce nesmí změnit seznam l. Například:

>>> replace ([1, 2, 1, 3], 1, 5)
[5, 2, 5, 3]

Úkol 11.2. Přepište předchozí funkci tak, aby nic nevracela a přímo měnila
seznam l. Například:

>>> l = [1, 2, 1, 3, 1]
>>> replace(l, 1, 5)
>>> l
[5, 2, 5, 3, 5]

85

Úkol 11.3. Vyřešte první dva úkoly za použití rekurze.

Úkol 11.4. Jsou vaše řešení koncově rekurzivní?

Úkol 11.5. Dokážete dvě předešlé rekurzivní verze upravit tak, aby každé re-
kurzivní volání zmenšilo délku uvažovaného seznamu na polovinu?

Úkol 11.6. Napište funkci reverse, která prohodí prvky zadaného seznamu.
Funkce nic nevrací a přímo mění seznam zadaný jako argument.

Úkol 11.7. Přepište předchozí verzi tak, aby vracela seznam s prohozenými
prvky a neměnila svůj argument.

Úkol 11.8. Umíte napsat verze reverse rekurzivně?

12 Dvanáctý seminář

12.1 Sekvence
Začneme funkcí, která rozhodne, zda je hodnota prvkem seznamu.

def is_member(input_list , element):
result = False
for i in range(len(input_list)):

input_element = input_list[i]
if input_element == element:

result = True
return result

Dostáváme:

>>> is_member ([1, 2, 3], 1)
True
>>> is_member ([1, 2, 3], 5)
False

Jaké požadavky funkce klade na argument input_list? Musíme být schopni
získat délku argumentu pomocí vestavěné funkce len a zjistit hodnotu na indexu
indexačním operátorem. To ale splňuje nejen seznam, ale i řetězec. Funkce bude
zázračně fungovat i na řetězce:

>>> is_member('abc', 'b')
True
>>> is_member('abc', 'e')
False

Bylo by vhodné přejmenovat některé proměnné funkce is_member tak, aby
nepoužívaly slovo list. Zavedeme si pojem sekvence. Sekvence je hodnota, která
má délku a je možné získat hodnotu na indexu menším, než délka sekvence.
Hodnotě na indexu říkáme položka sekvence (anglicky item). Délku sekvence
vrací funkce len a hodnotu na indexu indexační operátor. Seznamy i řetězce
jsou sekvence:

86

>>> l = [5, 2, 7]
>>> len(l)
3
>>> l[0]
5
>>> s = 'abc'
>>> len(s)
3
>>> s[1]
'b'

Zvolíme vhodnější jména pro proměnné ve funkci is_member:

def is_member(sequence , item):
result = False
for i in range(len(sequence)):

sequence_item = sequence[i]
if sequence_item == item:

result = True
break

return result

Funkce při nalezení položky v sekvenci nastaví proměnnou result, přeruší
cyklus a vrátí hodnotu result. Mohli bychom stejně dobře rovnou vrátit True.
Ve funkcích, kde dojde ke zvýšení čitelnosti, si dovolíme vrátit hodnotu i v místě,
které není posledním příkazem funkce. Funkci is_member vyjádříme přehledněji.

def is_member(sequence , item):
for i in range(len(sequence)):

sequence_item = sequence[i]
if sequence_item == item:
return True

return False

Následující funkce v sekvenci nahradí položku na indexu zadanou položkou.

def replace(sequence , index , item):
sequence[index] = item

Funkce se spoléhá na to, že lze měnit položky sekvence. Víme, že některé
sekvence nepřipouští změnu svých položek. Proto funkce bude fungovat pro
seznamy, ale ne pro řetězce.

>>> s1 = [1, 2, 3]
>>> replace(s1 , 1, 5)
>>> s1
[1, 5, 3]
>>> s2 = 'abc'
>>> replace(s2 , 1, 'd')
TypeError: 'str' object does not support item assignment

87

Zkusíme funkci přepsat pomocí řezů:

def replace(sequence , index , item):
return sequence [:index] + [item] + sequence[index + 1:]

Předpokládáme, že řez by měl fungovat pro každou sekvenci, protože vyža-
duje jen získání položky na indexu. Opravdu, řez pro řetězce funguje:

>>> s = 'abcd'
>>> s[1:]
'bcd'
>>> s[2:3]
'c'

Dále předpokládáme, že sekvence můžeme spojovat. Funkce ale stále řetězce
nepřipouští:

>>> s1 = [1, 2, 3]
>>> s1 = replace(s1 , 1, 5)
>>> s1
[1, 5, 3]
>>> s2 = 'abc'
>>> s2 = replace(s2 , 1, 'd')
TypeError: can only concatenate str (not "list") to str

Důvodem je, že řez na řetězci vrátí řetězec a ten nemůžeme spojit se sezna-
mem. Můžeme spojovat pouze sekvence stejného typu. Změníme funkci tak, aby
místo položky očekávala další sekvenci:

def replace(sequence , index , subsequence):
return sequence [:index] + subsequence + sequence[index + 1:]

Nyní již funkce funguje jak pro seznamy tak pro řetězce.

>>> s1 = [1, 2, 3]
>>> s1 = replace(s1 , 1, [5])
>>> s1
[1, 5, 3]
>>> s2 = 'abc'
>>> s2 = replace(s2 , 1, 'd')
>>> s2
'adc'

Obecně funkce očekává sekvence, které podporují řezy a spojování.
Každou sekvenci můžeme převést na seznam následující funkcí.

def my_list(sequence):
result = []
for i in range(len(sequence)):

result += [sequence[i]]
return result

88

Můžeme si dovolit použít příkaz na změnu seznamu += a to z toho důvodu, že
měníme seznam, který jsme si sami vytvořily (nejedná se o argument). Zkouška:

>>> my_list('abc')
['a', 'b', 'c']
>>> my_list ([1, 2])
[1, 2]

Stejný efekt má i vestavěná funkce list:

>>> list('abc')
['a', 'b', 'c']
>>> list([1, 2])
[1, 2]

12.2 Číselné sekvence
Následující program postupně vytiskne čísla od nuly do devíti.

for i in range (10):
print(i)

Ve skutečnosti část programu range(10) je volání funkce range. Funkce vrací
číselnou sekvenci. Jedná se o sekvenci, kde položky jsou čísla od nuly do zada-
ného čísla, které už v sekvenci není.

>>> r1 = range (10)
>>> len(r1)
10
>>> r1[1]
1

Samotná číselná sekvence se tiskne za použití funkce range.

>>> range (10)
range(0, 10)

Nový první argument v tisku je počáteční položka v číselné sekvenci. Vyhod-
nocením výrazu range(0, 10) obdržíme sekvenci rovnou range(10). Nula je
výchozí počáteční prvek sekvence.

>>> range (10) == range(0, 10)
True

Volbou počáteční položky můžeme například vytvořit číselnou sekvenci od deseti
do dvaceti:

>>> r = range (10, 20)
>>> len(r)
10
>>> r[0]

89

10
>>> r[5]
15

Můžeme také získávat řezy číselných sekvencí:

>>> r1 = range (100)
>>> r2 = r1 [50:]
>>> r2
range (50, 100)
>>> r2[0]
50
>>> len(r2)
50

Číselné sekvence ale není možné spojovat a ani nelze měnit jejich položky:

>>> range (10) + range (10, 20)
TypeError: unsupported operand type(s) for +: 'range ' and 'range '
>>> r = range (10)
>>> r[1] = 2
TypeError: 'range ' object does not support item assignment

Samozřejmě můžeme převést číselnou sekvenci na seznam pomocí funkce
list:

>>> list(range (50, 100))
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99]

Výhoda číselných sekvencí oproti seznamům je, že číselná sekvence zabírá
oproti ekvivalentnímu seznamu nepatrné místo v paměti - stačí si pamatovat
krajní hodnoty číselné sekvence.

Všimněte si délky vykonání posledního příkazu převádějícího číselnou sek-
venci na seznam.

>>> r1 = range (10**8)
>>> r1
range(0, 100000000)
>>> r2 = list(r1)

12.3 Iterace přes sekvence
Vezměme si program tisknoucí prvky seznamu:

l = [10, 3, 8]
for i in range(len(l)):
print(l[i])

90

Víme, že volání range(len(l)) vytvoří číselnou sekvenci od nuly do délky
seznamu l. Ukážeme si, že místo tohoto výrazu můžeme použít libovolný vý-
raz, jehož hodnota je sekvence. Rozšíříme si příkaz iterace. Pokud i je jméno
proměnné, s výraz, jehož hodnota je sekvence, a b blok, pak

for i in s:
b

je příkaz iterace přes sekvenci. Příkaz se vykonává podobně jako původní příkaz
pro iteraci s tím rozdílem, že proměnná i postupně nabývá hodnot všech položek
v sekvenci s. Blok b se tedy vykoná pro každou položku sekvence.

Předchozí program můžeme úsporněji napsat takto:

l = [10, 3, 8]
for element in l:
print(element)

Sekvenci můžeme vytvořit libovolným výrazem. Například spojením seznamů:

for element in ([10, 3] + [8]):
print(element)

Protože řetězce jsou sekvence, můžeme iterovat i přes ně:

s = 'abcdef '
for char in s:
print(char)

12.4 Volba kroku v řezu a číselné sekvenci
V řezech sekvence můžeme zvolit délku kroku. Pokud s, i, j, k jsou výrazy, pak

s[i:j:k]

je řez s volbou kroku. Hodnotou s je sekvence, hodnoty i a j jsou indexy
mezer sekvence s a hodnota k je přirozené číslo. Hodnota řezu s volbou kroku
je sekvence (stejného typu jako s) každé k-té položky od indexu i po index j.
Výchozí hodnotou výrazu k je jedna. Například:

>>> l = list(range (10))
>>> l[0:10:2]
[0, 2, 4, 6, 8]
>>> l[1:10:2]
[1, 3, 5, 7, 9]
>>> l[::3]
[0, 3, 6, 9]
>>> l[::]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Krok lze zadat jako třetí argument ve funkci range:

91

>>> range(0, 10, 2)
range(0, 10, 2)
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

Řez s krokem číselné sekvence s krokem je zase číselná sekvence s krokem:

>>> l = range(0, 10, 2)
>>> l
range(0, 10, 2)
>>> l[:5:2]
range(0, 10, 4)
>>> list(l[:5:2])
[0, 4, 8]

12.5 Změna řezu seznamu
Na levé straně od příkazu = můžeme použít i řez. Například nahrazení druhého
a třetího prvku lze provést následovně:

>>> l = [1, 2, 3, 4, 5]
>>> l[1:3] = [6, 7]
>>> l
[1, 6, 7, 4, 5]

Délka řezu se nemusí rovna délce seznamu, který chceme místo řezu vložit:

>>> l = [1, 2, 3, 4, 5]
>>> l[1:3] = [6, 7, 8]
>>> l
[1, 6, 7, 8, 4, 5]

Dokonce můžeme i řez ze seznamu smazat:

>>> l = [1, 2, 3, 4, 5]
>>> l[1:3] = []
>>> l
[1, 4, 5]

Pokud použijeme řez s krokem, musí se rovnat délka řezu délce náhrady:

>>> l = [0, 1, 2, 3, 4, 5, 6]
>>> l[::2] = [7, 8, 9, 10]
>>> l
[7, 1, 8, 3, 9, 5, 10]
>>> l[::2] = [7, 8, 9, 10, 11]
ValueError: attempt to assign sequence of size 5 to
extended slice of size 4

Na pravé straně od příkazu přiřazení může být libovolná sekvence:

92

>>> l = list(range (10))
>>> l[2:4] = range (3)
>>> l
[0, 1, 0, 1, 2, 4, 5, 6, 7, 8, 9]
>>> l[4:4] = 'abc'
>>> l
[0, 1, 0, 1, 'a', 'b', 'c', 2, 4, 5, 6, 7, 8, 9]

Pokud se dolní i horní mez řezu rovnají, dojde k vložení sekvence do seznamu.

12.6 Záporný krok
Krok v číselných sekvencí může být i záporný. To vede na klesající číselné sek-
vence:

>>> list(range (10, 0, -1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(range(5, -5, -2))
[5, 3, 1, -1, -3]

Záporný krok lze použít i v řezech. Zde se však indexy mezer posunují o
jedna doprava. Proto:

>>> l = list(range (10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l[10:0: -1]
[9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> l[10:0: -2]
[9, 7, 5, 3, 1]
>>> l[3:0: -1]
[3, 2, 1]
>>> l[10:0: -2] = range (5)
>>> l
[0, 4, 2, 3, 4, 2, 6, 1, 8, 0]

Pokud chceme do řezu se záporným krokem uvést i první prvek, musíme
druhou mez vynechat:

>>> l = list(range (10))
>>> l[5:: -1]
[5, 4, 3, 2, 1, 0]
>>> l[:: -1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

12.7 Záporný index
Položky sekvence lze číslovat odzadu zápornými čísly. Poslední prvek má index
-1, před poslední −2 a tak dále. Například:

93

>>> l = list(range (10))
>>> l[-1]
9
>>> l[-2]
8

I mezery lze číslovat zápornými čísly. Mezera mezi posledním a předposlením
prvkem má index −1. Proto můžeme použít záporné index mezer i v řezech:

>>> l = list(range (10))
>>> l
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> l[-5:-1]
[5, 6, 7, 8]
>>> l[-1:-5:-1]
[9, 8, 7, 6]
>>> l[-1:-5:-1] = [10, 11, 12, 13]
>>> l
[0, 1, 2, 3, 4, 5, 13, 12, 11, 10]

12.8 Úkoly
Úkol 12.1. Napište funkci my_slice, která bere sekvenci a tři čísla i, j, k a
vrací seznam položek sekvence určený řezem od i do j po k. Ve funkci nemůžete
použít řez.

Úkol 12.2. Přepište předchozí funkci tak, aby používala range jen s jedním
argumentem.

Úkol 12.3. Napište funkci, která rozhodne, zda seznam obsahuje prvky nějaké
číslené sekvence. Například seznam [1, 3, 5] lze zapsat jako list(range(1,6,2)),
ale seznam [1, 3, 6] netvoří prvky žádné číselné sekvence.

Úkol 12.4. Napište funkci, která převede seznam celých čísel na číselnou sek-
venci. Funkce skončí chybou, pokud převod nelze provést. Chybu můžete způ-
sobit vyhodnocením výrazu 1/0. Využijte funkci z předchozího úkolu.

Úkol 12.5. Číselnou sekvenci bez kroku můžeme vyjádřit dvouprvkový sezna-
mem skládajícím se z dolní a horní meze. Napište funkci my_range, která vytvoří
vaší číselnou sekvenci a funkce my_range_from a my_range_to, které vrací dolní
a horní mez vaší číselné sekvence.

Úkol 12.6. Napište funkce my_range_len a my_range_item, kde první vrátí
délku vaší číselné sekvence a druhá prvek na daném indexu.

Úkol 12.7. Napište funkci my_range_list, která převede vaší číselnou sekvenci
na seznam.

Úkol 12.8. Napište funkci, která spojí dvě vaše číselné sekvence. Pokud spojení
nelze provést, funkce skončí chybou.

94

Úkol 12.9. Rozšiřte vaše číselné sekvence o zadání kladného kroku.

Úkol 12.10. Umožněte i záporný krok.

Úkol 12.11. Vytvořte podobně vaše geometrické sekvence.

13 Třináctý seminář

13.1 Vstup
Funkce print vytiskne řetězec na výstup a odřádkuje. Obráceně funkce input
přečte jednu řádku ze vstupu a vrátí ji jako řetězec. Představme si program
pojmenovaný jako input.py.

print(input ())

Program spuštěný příkazem python3 input.py bude čekat na náš vstup. Za-
dáme například jablko a stiskneme klávesu Return. Program vytiskne jablko
na výstup a ukončí se.

% python3 example_input_1.py
jablko
jablko
%

Symbol procenta znázorňuje výzvu příkazové řádky.
Funkci input můžeme dát výzvu jako argument:

name = input('Zadejte jméno: ')
print('Vaše jméno je ' + name + '.')

Program se zeptá na jméno a vytiskne větu, která jméno obsahuje. Například:

Zadejte jméno: Jan
Vaše jméno je Jan.

13.2 Převody typů
Co když budeme chtít napsat program, který očekává číslo a vytiskne číslo o
jedna větší? Zkusme následující program.

number = input('Zadejte číslo: ')
print(number + 1)

Program po zadání čísla skončí chybou. Proč?

Zadejte číslo: 12
TypeError: can only concatenate str (not "int") to str

95

Důvodem je, že funkce input vrací vždy řetězec. Převést řetězec cifer v
desítkové soustavě na číslo již umíme. Jednodušeji můžeme použít funkci int.
Program opravíme:

number1 = int(input('Zadejte číslo: '))
print(number1 + 1)

a vyzkoušíme:

Zadejte číslo: 12
13

Představme si, že máme proměnnou age, jejíž hodnota je číslo vyjadřující
věk uživatele, a chceme vytisknout větu informující uživatele o jeho věku. Naivní
pokus nebude fungovat:

age = 24
print('Váš věk je ' + age + ' let.')

Program skončí chybou:

TypeError: can only concatenate str (not "int") to str

Důvodem je, že řetězec můžeme spojovat pouze s řetězcem. Převod čísla na
řetězec jeho cifer v desítkové soustavě také umíme, ale opět lze převod jedno-
dušeji uskutečnit funkcí str. Opravená verze:

age = 24
print('Váš věk je ' + str(age) + ' let.')

správně vytiskne:

Váš věk je 24 let.

Funkce str převede libovolnou hodnotu na řetězec. Můžeme tedy například
napsat

output = ''
output += str('text')
output += ' '
output += str(True)
output += ' '
output += str([1, 2, 3])
print(output)

Na výstupu se objeví:

text True [1, 2, 3]

96

Kromě funkce str převádí hodnoty na řetězec také funkce repr. Rozdíl mezi
nimi je v tom, že funkce str vrací řetězec čitelný pro člověka a funkce repr řetěz-
covou reprezentaci hodnoty. To je řetězec, který obsahuje výraz, jehož hodnota
je rovna reprezentované hodnotě. Rozdíl je patrný například u řetězce:

>>> str('jahoda ')
'jahoda '
>>> repr('jahoda ')
"'jahoda '"

Vidíme, že druhá funkce obalila řetězec apostrofy a to z toho důvodu, že
obsah řetězce můžeme dát na vstup a získat zpět hodnotu:

>>> 'jahoda '
'jahoda '

13.3 Formátování
Vraťme se k tisku věty obsahující číslo:

number = 12
print('Výsledek je ' + str(number) + '.')

Jednodušeji lze program zapsat pomocí formátovacího řetězce. Jeho zápis
je stejný jako zápis obyčejného řetězce s tím rozdílem, že před apostrof umís-
tíme znak f. Formátovací řetězec může obsahovat výrazy obklopené složenými
závorkami. Například:

f'Jedna plus jedna je {1 + 1}.'

Hodnota formátovacího řetězce se získá tak, že se nahradí všechny výrazy v
řetězci jejich hodnotami převedenými na řetězec pomocí funkce str. Předchozí
program lze tedy úsporněji napsat takto:

number = 12
print(f'Výsledek je {number}.')

Protože se k převodu používá funkce str, bude řetězec vložený do formáto-
vacího řetězce bez uvozovek:

score = 12
name = 'Petr'
result = f'{name} má {score} bodů.'
print(result)

Program vytiskne:

Petr má 12 bodů.

Do složených závorek může být vložen libovolný výraz. Například program

97

number = 12
print(f'Číslo {number} krát dva se rovná {number * 2}.')

vytiskne

Číslo 12 krát dva se rovná 24.

13.4 Metody řetězců
Jistě byste dokázali napsat funkci, která převede řetězec na velká písmena. Ře-
tězce ale již mají metodu, která převod uskuteční. Metoda je funkce, která je
vlastněna jistým typem. Například typ řetězec má metodu upper. Podobně jako
funkce mají i metody výraz pro jejich zavolání. Pokud v a a1, . . . , an jsou výrazy
a m je jméno metody, pak

v.m(a1,. . .,vn)

je výraz volání metody. Typ hodnoty v musí mít metodum. Hodnotu v nezýváme
příjemce (anglicky self). Hodnotou výrazu je výsledek volání metody. Například:

>>> name = 'praha'
>>> name.upper()
'PRAHA'

Čísla ale metodu upper nemají, proto zavolání metody skončí chybou.

>>> number = 1
>>> number.upper()
AttributeError: 'int' object has no attribute 'upper'

Podobně řetězce mají metodu lower, která převede řetězec na malá písmena:

>>> 'Olomouc'.lower()
'olomouc'

Ukážeme si ještě metodu replace, která bere dva řetězce s1 a s2 a v řetězci
nahradí všechny výskyty řetězce s1 za řetězec s2. Například:

>>> string = 'Dám si čaj.'
>>> string.replace('čaj', 'kávu')
'Dám si kávu.'

Výraz v ve volání metody může být další volání metody. Takto je možné
přirozeně volání metod řetězit:

>>> string = 'Mám pět knih.'
>>> string.replace('pět', 'šest').upper()
'MÁM ŠEST KNIH.'

98

Víme, že funkce list převede řetězec na seznam. Například:

>>> list('abc')
['a', 'b', 'c']

Obráceně převedení seznamu znaků na řetězec lze provést metodou join:

>>> ''.join(['a', 'b', 'c'])
'abc'

Příjemce zprávy je řetězec, který se vkládá mezi řetězce v seznamu. Můžeme
tak spojit nejen znaky, ale i seznam řetězců za použití oddělovače:

>>> '-'.join(['ten', 'co', 'se', 'nebojí'])
'ten-co-se-nebojí'

Ve skutečnosti metoda opačná k join je metoda split, která rozdělí řetězec
podle oddělovače a vrátí seznam částí:

>>> 'ten-co-se-nebojí'.split('-')
['ten', 'co', 'se', 'nebojí']

13.5 Nápověda
Funkce help(i) zobrazí nápovědu vestavěné funkce i. Například

>>> help(len)

zobrazí:

len(obj, /)
Return the number of items in a container.

Lomítko v hlavičce můžete ignorovat.
Nápovědu ukončíte stiskem klávesy Q. Funkce umožňuje i zobrazit nápovědu

metod. Zde je potřeba tečkou oddělit typ a název metody. Například:

>>> help(str.upper)

Zobrazí:

upper(self, /)
Return a copy of the string converted to uppercase.

Typ str je řetězec.
Další nápovědu lze získat na oficiálních stránkách. Například vestavěné funkce

jsou popsány zde: https://docs.python.org/3/library/functions.html. Po-
pis typů včetně jejich metod lze nalézt zde: https://docs.python.org/3/
library/stdtypes.html. Nakonec popis jazyka se nachází tady: https://docs.
python.org/3/reference/index.html

99

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html

	První seminár
	Výrazy
	Promenné
	Program

	Druhý seminár
	Operátor umocnování
	Pravdivostní hodnoty
	Vetvení programu

	Tretí seminár
	Klauzule príkazu vetvení
	Iterace
	Tisk retezce znaku

	Ctvrtý seminár
	Rozšírený príkaz prirazení
	Podmínecné opakování

	Pátý seminár
	Prerušení iterace
	Volání funkce
	Práce s retezci

	Šestý seminár
	Konstanty
	Desetinná císla

	Sedmý seminár
	Funkce
	Seznamy
	Úkoly

	Osmý seminár
	Rozdelení programu do funkcí
	Seznamy ruzných hodnot
	Úkoly

	Devátý seminár
	Desátý seminár
	Rekurze
	Úkoly

	Jedenáctý seminár
	Podseznamy
	Promenlivost seznamu
	Úkoly

	Dvanáctý seminár
	Sekvence
	Císelné sekvence
	Iterace pres sekvence
	Volba kroku v rezu a císelné sekvenci
	Zmena rezu seznamu
	Záporný krok
	Záporný index
	Úkoly

	Trináctý seminár
	Vstup
	Prevody typu
	Formátování
	Metody retezcu
	Nápoveda

